Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import os
|
| 3 |
+
import glob
|
| 4 |
+
from huggingface_hub import snapshot_download
|
| 5 |
+
from ctransformers import AutoModelForCausalLM
|
| 6 |
+
import gradio as gr
|
| 7 |
+
|
| 8 |
+
# Model info
|
| 9 |
+
MODEL_REPO = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
|
| 10 |
+
MODEL_FILE = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf"
|
| 11 |
+
MODEL_CACHE_DIR = os.environ.get("MODEL_DIR", "/app/model_cache")
|
| 12 |
+
|
| 13 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# If model not present, download it (public HF repo)
|
| 16 |
+
def ensure_model():
|
| 17 |
+
# If user committed model locally, prefer that
|
| 18 |
+
local_paths = glob.glob(os.path.join(MODEL_CACHE_DIR, "**", MODEL_FILE), recursive=True)
|
| 19 |
+
candidate = local_paths[0] if local_paths else os.path.join(MODEL_CACHE_DIR, MODEL_FILE)
|
| 20 |
+
if os.path.exists(candidate):
|
| 21 |
+
return candidate
|
| 22 |
+
|
| 23 |
+
print("Downloading model snapshot from Hugging Face hub...")
|
| 24 |
+
repo_path = snapshot_download(repo_id=MODEL_REPO, cache_dir=MODEL_CACHE_DIR)
|
| 25 |
+
matches = glob.glob(os.path.join(repo_path, "**", MODEL_FILE), recursive=True)
|
| 26 |
+
if matches:
|
| 27 |
+
return matches[0]
|
| 28 |
+
# fallback: check repo_path root
|
| 29 |
+
fallback = os.path.join(repo_path, MODEL_FILE)
|
| 30 |
+
if os.path.exists(fallback):
|
| 31 |
+
return fallback
|
| 32 |
+
raise FileNotFoundError(f"Could not locate {MODEL_FILE} after download (repo_path={repo_path}).")
|
| 33 |
+
|
| 34 |
+
model_path = ensure_model()
|
| 35 |
+
print("Using model file:", model_path)
|
| 36 |
+
|
| 37 |
+
# Load model (ctransformers handles GGUF)
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
MODEL_REPO,
|
| 40 |
+
model_file=model_path,
|
| 41 |
+
model_type="llama",
|
| 42 |
+
max_new_tokens=256,
|
| 43 |
+
temperature=0.7
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
custom_data = {
|
| 47 |
+
"hi": "hello Good morning,i am chatbot deepika",
|
| 48 |
+
"about you": "I am deepika AI Chatbot,how may i help you..",
|
| 49 |
+
"i love you": "i love you too",
|
| 50 |
+
"age": "45"
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
def chatbot(msg: str):
|
| 54 |
+
if not msg:
|
| 55 |
+
return ""
|
| 56 |
+
if msg in custom_data:
|
| 57 |
+
return custom_data[msg]
|
| 58 |
+
# ctransformers returns a string for simple calls
|
| 59 |
+
return model(f"### Instruction:\n{msg}\n\n### Response:\n")
|
| 60 |
+
|
| 61 |
+
if __name__ == "__main__":
|
| 62 |
+
port = int(os.environ.get("PORT", 7860))
|
| 63 |
+
gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Custom Chatbot - TinyLlama")\
|
| 64 |
+
.launch(server_name="0.0.0.0", server_port=port)
|