Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from fastai.vision.all import * | |
| from huggingface_hub import from_pretrained_fastai | |
| from pathlib import Path | |
| import glob | |
| classes_file = Path('classes.txt') | |
| if not classes_file.exists(): | |
| raise FileNotFoundError(f"{classes_file} not found") | |
| classes = classes_file.read_text().splitlines() | |
| model_path = "makaveli10/tiny_vit_food_classifier" | |
| learn = from_pretrained_fastai(model_path) | |
| sample_folder = Path('samples') | |
| if sample_folder.exists(): | |
| sample_images = sorted(glob.glob(str(sample_folder / '*'))) | |
| examples = [[img] for img in sample_images] | |
| else: | |
| examples = [] | |
| def predict(img): | |
| # img: PIL image | |
| pred, idx, probs = learn.predict(img) | |
| return {classes[i]: float(probs[i]) for i in range(len(classes))} | |
| iface = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type='pil'), | |
| outputs=gr.Label(num_top_classes=5), | |
| examples=examples, | |
| title="Food-101 Classifier", | |
| description="Upload an image of food or choose from examples to get predictions." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |