Spaces:
Build error
Build error
| import torch | |
| from transformers import pipeline | |
| import librosa | |
| from datetime import datetime | |
| from deep_translator import GoogleTranslator | |
| from typing import Dict, Union | |
| from gliner import GLiNER | |
| import gradio as gr | |
| # Model and device configuration for transcription | |
| MODEL_NAME = "openai/whisper-large-v3-turbo" | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| # Initialize Whisper pipeline | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| ) | |
| # Initialize GLiNER for information extraction | |
| gliner_model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to("cpu") | |
| def merge_entities(entities): | |
| if not entities: | |
| return [] | |
| merged = [] | |
| current = entities[0] | |
| for next_entity in entities[1:]: | |
| if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): | |
| current['word'] += ' ' + next_entity['word'] | |
| current['end'] = next_entity['end'] | |
| else: | |
| merged.append(current) | |
| current = next_entity | |
| merged.append(current) | |
| return merged | |
| def transcribe_audio(audio_path): | |
| """ | |
| Transcribe a local audio file using the Whisper pipeline, log timing, and save transcription to a file. | |
| """ | |
| try: | |
| # Log start time | |
| start_time = datetime.now() | |
| # Ensure audio is mono and resampled to 16kHz | |
| audio, sr = librosa.load(audio_path, sr=16000, mono=True) | |
| # Perform transcription | |
| transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"] | |
| # Log end time | |
| end_time = datetime.now() | |
| return transcription | |
| except Exception as e: | |
| return f"Error processing audio: {e}" | |
| def translate_text_to_english(text): | |
| """ | |
| Translate text into English using GoogleTranslator. | |
| """ | |
| try: | |
| # Perform translation | |
| translated_text = GoogleTranslator(source='auto', target='en').translate(text) | |
| return translated_text | |
| except Exception as e: | |
| return f"Error during translation: {e}" | |
| def extract_information(prompt: str, text: str, threshold: float, nested_ner: bool) -> Dict[str, Union[str, int, float]]: | |
| """ | |
| Extract entities from the English text using GLiNER model. | |
| """ | |
| try: | |
| text = prompt + "\n" + text | |
| entities = [ | |
| { | |
| "entity": entity["label"], | |
| "word": entity["text"], | |
| "start": entity["start"], | |
| "end": entity["end"], | |
| "score": 0, | |
| } | |
| for entity in gliner_model.predict_entities( | |
| text, ["match"], flat_ner=not nested_ner, threshold=threshold | |
| ) | |
| ] | |
| merged_entities = merge_entities(entities) | |
| return {"text": text, "entities": merged_entities} | |
| except Exception as e: | |
| return {"error": f"Information extraction failed: {e}"} | |
| def pipeline_fn(audio, prompt, threshold, nested_ner): | |
| """ | |
| Combine transcription, translation, and information extraction in a single pipeline. | |
| """ | |
| transcription = transcribe_audio(audio) | |
| if "Error" in transcription: | |
| return transcription, "", "", {} | |
| translated_text = translate_text_to_english(transcription) | |
| if "Error" in translated_text: | |
| return transcription, translated_text, "", {} | |
| info_extraction = extract_information(prompt, translated_text, threshold, nested_ner) | |
| return transcription, translated_text, info_extraction | |
| # Gradio Interface | |
| with gr.Blocks(title="Audio Processing and Information Extraction") as interface: | |
| gr.Markdown("## Audio Transcription, Translation, and Information Extraction") | |
| with gr.Row(): | |
| # Fixed: removed 'source' argument from gr.Audio | |
| audio_input = gr.Audio(type="filepath", label="Upload Audio File") | |
| prompt_input = gr.Textbox(label="Prompt for Information Extraction", placeholder="Enter your prompt here") | |
| with gr.Row(): | |
| threshold_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="NER Threshold") | |
| nested_ner_checkbox = gr.Checkbox(label="Enable Nested NER") | |
| with gr.Row(): | |
| transcription_output = gr.Textbox(label="Transcription (Urdu)", interactive=False) # Corrected to interactive=False | |
| translation_output = gr.Textbox(label="Translation (English)", interactive=False) # Corrected to interactive=False | |
| with gr.Row(): | |
| extraction_output = gr.HighlightedText(label="Extracted Information") | |
| process_button = gr.Button("Process Audio") | |
| process_button.click( | |
| fn=pipeline_fn, | |
| inputs=[audio_input, prompt_input, threshold_slider, nested_ner_checkbox], | |
| outputs=[transcription_output, translation_output, extraction_output], | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch() | |