Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -170,11 +170,11 @@ PDF pages:
|
|
| 170 |
# Local Search (ColPali)
|
| 171 |
# =============================
|
| 172 |
|
| 173 |
-
def
|
| 174 |
"""
|
| 175 |
Search within a PDF document for the most relevant pages to answer a query and return the page indexes as a list.
|
| 176 |
MCP tool description:
|
| 177 |
-
- name:
|
| 178 |
- description: Search within a PDF document for the most relevant pages to answer a query.
|
| 179 |
- input_schema:
|
| 180 |
type: object
|
|
@@ -212,7 +212,7 @@ def search_synthetize(query: str, k: int = 5) -> List[int]:
|
|
| 212 |
"""
|
| 213 |
Search within a PDF document for the most relevant pages to answer a query and synthetizes a short grounded answer using only those pages.
|
| 214 |
MCP tool description:
|
| 215 |
-
- name:
|
| 216 |
- description: Search within a PDF document for the most relevant pages to answer a query and synthetizes a short grounded answer using only those pages.
|
| 217 |
- input_schema:
|
| 218 |
type: object
|
|
@@ -226,13 +226,15 @@ def search_synthetize(query: str, k: int = 5) -> List[int]:
|
|
| 226 |
Returns:
|
| 227 |
ai_response (str): Text answer to the query grounded in content from the PDF, with citations (page numbers).
|
| 228 |
"""
|
| 229 |
-
top_k_indices =
|
| 230 |
expanded = set(top_k_indices)
|
| 231 |
for i in top_k_indices:
|
| 232 |
expanded.add(i - 1)
|
| 233 |
expanded.add(i + 1)
|
| 234 |
expanded = {i for i in expanded if 0 <= i < len(images)}
|
| 235 |
expanded = sorted(expanded)
|
|
|
|
|
|
|
| 236 |
|
| 237 |
# Build gallery results with 1-based page numbering
|
| 238 |
results = []
|
|
@@ -268,12 +270,13 @@ def _build_image_parts_from_indices(indices: List[int]) -> List[Dict[str, Any]]:
|
|
| 268 |
|
| 269 |
SYSTEM1 = (
|
| 270 |
"""
|
| 271 |
-
You are a PDF research agent with a single tool:
|
| 272 |
Act iteratively:
|
| 273 |
-
1) Split the user question into 1β4 focused sub-queries. Subqueries should be asked as natural language questions, not just keywords.
|
| 274 |
-
2) For each sub-query, call
|
| 275 |
-
3) You will receive the output of
|
| 276 |
-
4)
|
|
|
|
| 277 |
|
| 278 |
Workflow:
|
| 279 |
β’ Use ONLY the provided images for grounding and cite as (p.<page>).
|
|
@@ -286,10 +289,10 @@ Deliverable:
|
|
| 286 |
|
| 287 |
|
| 288 |
SYSTEM2 = """
|
| 289 |
-
You are a PDF research agent with a single tool:
|
| 290 |
Act iteratively:
|
| 291 |
1) Split the user question into 1β4 focused sub-queries. Subqueries should be asked as natural language questions, not just keywords.
|
| 292 |
-
2) For each sub-query, call
|
| 293 |
3) Stop early when confident; otherwise refine and repeat, up to 4 iterations and 20 searches in total. If info is missing, try to continue searching using new keywords and queries.
|
| 294 |
|
| 295 |
Grounding & citations:
|
|
@@ -325,11 +328,20 @@ def stream_agent(question: str,
|
|
| 325 |
Multi-round streaming:
|
| 326 |
β’ Seed: optional local ColPali search on the user question to attach initial pages.
|
| 327 |
β’ Each round: open a GPT-5 stream with *attached images* (if any).
|
| 328 |
-
β’ If the model calls
|
| 329 |
start a NEW API call with previous_response_id + the requested pages attached.
|
| 330 |
"""
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
SYSTEM= SYSTEM1 if visual_reasoning else SYSTEM2
|
| 334 |
|
| 335 |
if not api_key:
|
|
@@ -342,12 +354,6 @@ def stream_agent(question: str,
|
|
| 342 |
|
| 343 |
client = OpenAI(api_key=api_key)
|
| 344 |
|
| 345 |
-
# Optional seeding: attach some likely pages on round 1
|
| 346 |
-
try:
|
| 347 |
-
seed_indices = [] if visual_reasoning is False else search(question, k=5)
|
| 348 |
-
except Exception as e:
|
| 349 |
-
yield f"β Search failed: {e}", "", ""
|
| 350 |
-
return
|
| 351 |
|
| 352 |
log_lines = ["Log", f"[seed] indices={seed_indices}"]
|
| 353 |
prev_response_id: Optional[str] = None
|
|
@@ -386,9 +392,10 @@ def stream_agent(question: str,
|
|
| 386 |
parts.append({"type": "input_text", "text": "Continue reasoning with the newly attached pages. Remember you should probably further query the search tool."})
|
| 387 |
|
| 388 |
parts += _build_image_parts_from_indices(attached_indices)
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
|
|
|
| 392 |
|
| 393 |
# First call includes system; follow-ups use previous_response_id
|
| 394 |
if prev_response_id:
|
|
@@ -404,7 +411,7 @@ def stream_agent(question: str,
|
|
| 404 |
input=req_input,
|
| 405 |
reasoning={"effort": "medium", "summary": "auto"},
|
| 406 |
tools=tools,
|
| 407 |
-
store=True,
|
| 408 |
)
|
| 409 |
if prev_response_id:
|
| 410 |
req_kwargs["previous_response_id"] = prev_response_id
|
|
@@ -493,12 +500,13 @@ def stream_agent(question: str,
|
|
| 493 |
expanded.add(i - 1)
|
| 494 |
expanded.add(i + 1)
|
| 495 |
expanded = {i for i in expanded if 0 <= i < len(images)}
|
| 496 |
-
pending_indices = sorted(expanded) if len(expanded) <
|
| 497 |
round_idx += 1
|
| 498 |
continue
|
| 499 |
|
| 500 |
# No further tool-driven retrieval β done
|
| 501 |
break
|
|
|
|
| 502 |
|
| 503 |
return
|
| 504 |
|
|
@@ -567,14 +575,14 @@ body {background: radial-gradient(1200px 600px at 20% -10%, rgba(124,58,237,.25)
|
|
| 567 |
|
| 568 |
def build_ui():
|
| 569 |
theme = gr.themes.Soft()
|
| 570 |
-
with gr.Blocks(title="ColPali
|
| 571 |
gr.HTML(
|
| 572 |
"""
|
| 573 |
<div class="app-header">
|
| 574 |
<div class="icon">π</div>
|
| 575 |
<div>
|
| 576 |
-
<h1>ColPali PDF Search +
|
| 577 |
-
<p>Index PDFs with ColQwen2. The agent
|
| 578 |
</div>
|
| 579 |
</div>
|
| 580 |
"""
|
|
@@ -627,10 +635,10 @@ def build_ui():
|
|
| 627 |
search_synthetize_button = gr.Button("π Search & Synthetize", variant="primary")
|
| 628 |
|
| 629 |
with gr.Column(scale=2):
|
| 630 |
-
output_docs = gr.Textbox(label="Indices
|
| 631 |
output_text = gr.Textbox(label="ColQwen+GPT-5 Answer", lines=12, placeholder="...")
|
| 632 |
|
| 633 |
-
search_button.click(
|
| 634 |
search_synthetize_button.click(search_synthetize, inputs=[query_box, k_slider], outputs=[output_text])
|
| 635 |
|
| 636 |
# ---- Tab 3: Agent (Streaming)
|
|
@@ -670,9 +678,9 @@ def build_ui():
|
|
| 670 |
)
|
| 671 |
with gr.Row():
|
| 672 |
visual_reasoning_box = gr.Dropdown(
|
| 673 |
-
label="
|
| 674 |
-
choices=["Visual Reasoning", "
|
| 675 |
-
value="Visual Reasoning",
|
| 676 |
)
|
| 677 |
|
| 678 |
with gr.Column(scale=3):
|
|
|
|
| 170 |
# Local Search (ColPali)
|
| 171 |
# =============================
|
| 172 |
|
| 173 |
+
def image_search(query: str, k: int = 5) -> List[int]:
|
| 174 |
"""
|
| 175 |
Search within a PDF document for the most relevant pages to answer a query and return the page indexes as a list.
|
| 176 |
MCP tool description:
|
| 177 |
+
- name: visual_deepsearch_image_search
|
| 178 |
- description: Search within a PDF document for the most relevant pages to answer a query.
|
| 179 |
- input_schema:
|
| 180 |
type: object
|
|
|
|
| 212 |
"""
|
| 213 |
Search within a PDF document for the most relevant pages to answer a query and synthetizes a short grounded answer using only those pages.
|
| 214 |
MCP tool description:
|
| 215 |
+
- name: visual_deepsearch_search_synthetize
|
| 216 |
- description: Search within a PDF document for the most relevant pages to answer a query and synthetizes a short grounded answer using only those pages.
|
| 217 |
- input_schema:
|
| 218 |
type: object
|
|
|
|
| 226 |
Returns:
|
| 227 |
ai_response (str): Text answer to the query grounded in content from the PDF, with citations (page numbers).
|
| 228 |
"""
|
| 229 |
+
top_k_indices = image_search(query, k)
|
| 230 |
expanded = set(top_k_indices)
|
| 231 |
for i in top_k_indices:
|
| 232 |
expanded.add(i - 1)
|
| 233 |
expanded.add(i + 1)
|
| 234 |
expanded = {i for i in expanded if 0 <= i < len(images)}
|
| 235 |
expanded = sorted(expanded)
|
| 236 |
+
expanded = expanded if len(expanded) < 20 else sorted(top_k_indices)
|
| 237 |
+
|
| 238 |
|
| 239 |
# Build gallery results with 1-based page numbering
|
| 240 |
results = []
|
|
|
|
| 270 |
|
| 271 |
SYSTEM1 = (
|
| 272 |
"""
|
| 273 |
+
You are a PDF research agent with a single tool: visual_deepsearch_image_search(query: string, k: int).
|
| 274 |
Act iteratively:
|
| 275 |
+
1) Split the user question into 1β4 focused sub-queries. You can use the provided page images to help you ask relevant followup queries. Subqueries should be asked as natural language questions, not just keywords.
|
| 276 |
+
2) For each sub-query, call visual_deepsearch_image_search (k=5 by default; increase to up to 10 if you need to go deep).
|
| 277 |
+
3) You will receive the output of visual_deepsearch_image_search as a list of indices corresponding to page numbers. Print the page numbers out and stop generating. An external system will take over and convert the indices into image for you.
|
| 278 |
+
4) Analyze the images received to find information you were looking for. If you are condident that you have all the information needed for a complete response, stop early and provide a final answer. Otherwise run new search calls using the tool to find additional missing information.
|
| 279 |
+
5) Repeat the process for up to 5 rounds of iterations and 20 searches in total. If info is missing, try to continue searching using new keywords and queries.
|
| 280 |
|
| 281 |
Workflow:
|
| 282 |
β’ Use ONLY the provided images for grounding and cite as (p.<page>).
|
|
|
|
| 289 |
|
| 290 |
|
| 291 |
SYSTEM2 = """
|
| 292 |
+
You are a PDF research agent with a single tool: visual_deepsearch_search_synthetize(query: string, k: int).
|
| 293 |
Act iteratively:
|
| 294 |
1) Split the user question into 1β4 focused sub-queries. Subqueries should be asked as natural language questions, not just keywords.
|
| 295 |
+
2) For each sub-query, call visual_deepsearch_search_synthetize (k=5 by default; increase to up to 20 if you need to go deep).
|
| 296 |
3) Stop early when confident; otherwise refine and repeat, up to 4 iterations and 20 searches in total. If info is missing, try to continue searching using new keywords and queries.
|
| 297 |
|
| 298 |
Grounding & citations:
|
|
|
|
| 328 |
Multi-round streaming:
|
| 329 |
β’ Seed: optional local ColPali search on the user question to attach initial pages.
|
| 330 |
β’ Each round: open a GPT-5 stream with *attached images* (if any).
|
| 331 |
+
β’ If the model calls the tool and returns indices, we end the stream and
|
| 332 |
start a NEW API call with previous_response_id + the requested pages attached.
|
| 333 |
"""
|
| 334 |
+
|
| 335 |
+
# Optional seeding: attach some likely pages on round 1
|
| 336 |
+
try:
|
| 337 |
+
seed_indices = search(question, k=5) if visual_reasoning == "Seeded Visual Reasoning" else []
|
| 338 |
+
except Exception as e:
|
| 339 |
+
yield f"β Search failed: {e}", "", ""
|
| 340 |
+
return
|
| 341 |
+
|
| 342 |
+
visual_reasoning: bool = True if "Visual Reasoning" in visual_reasoning else False
|
| 343 |
+
|
| 344 |
+
allowed_tools = "visual_deepsearch_image_search" if visual_reasoning else "visual_deepsearch_search_synthetize"
|
| 345 |
SYSTEM= SYSTEM1 if visual_reasoning else SYSTEM2
|
| 346 |
|
| 347 |
if not api_key:
|
|
|
|
| 354 |
|
| 355 |
client = OpenAI(api_key=api_key)
|
| 356 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
log_lines = ["Log", f"[seed] indices={seed_indices}"]
|
| 359 |
prev_response_id: Optional[str] = None
|
|
|
|
| 392 |
parts.append({"type": "input_text", "text": "Continue reasoning with the newly attached pages. Remember you should probably further query the search tool."})
|
| 393 |
|
| 394 |
parts += _build_image_parts_from_indices(attached_indices)
|
| 395 |
+
|
| 396 |
+
# if attached_indices:
|
| 397 |
+
# pages_str = ", ".join(str(i + 1) for i in sorted(set(attached_indices)))
|
| 398 |
+
# parts.append({"type": "input_text", "text": f"(Attached pages from round {round_idx}: {pages_str}). Ground your answer in these images, or query for new pages."})
|
| 399 |
|
| 400 |
# First call includes system; follow-ups use previous_response_id
|
| 401 |
if prev_response_id:
|
|
|
|
| 411 |
input=req_input,
|
| 412 |
reasoning={"effort": "medium", "summary": "auto"},
|
| 413 |
tools=tools,
|
| 414 |
+
store=True,
|
| 415 |
)
|
| 416 |
if prev_response_id:
|
| 417 |
req_kwargs["previous_response_id"] = prev_response_id
|
|
|
|
| 500 |
expanded.add(i - 1)
|
| 501 |
expanded.add(i + 1)
|
| 502 |
expanded = {i for i in expanded if 0 <= i < len(images)}
|
| 503 |
+
pending_indices = sorted(expanded) if len(expanded) < 20 else sorted(base)
|
| 504 |
round_idx += 1
|
| 505 |
continue
|
| 506 |
|
| 507 |
# No further tool-driven retrieval β done
|
| 508 |
break
|
| 509 |
+
print("Search Finished")
|
| 510 |
|
| 511 |
return
|
| 512 |
|
|
|
|
| 575 |
|
| 576 |
def build_ui():
|
| 577 |
theme = gr.themes.Soft()
|
| 578 |
+
with gr.Blocks(title="ColPali Agentic RAG", theme=theme, css=CUSTOM_CSS) as demo:
|
| 579 |
gr.HTML(
|
| 580 |
"""
|
| 581 |
<div class="app-header">
|
| 582 |
<div class="icon">π</div>
|
| 583 |
<div>
|
| 584 |
+
<h1>ColPali PDF Search + GPT5 Agent</h1>
|
| 585 |
+
<p>Index PDFs with ColQwen2. The agent uses the search tool through MCP. The search tool returns either textual summaries or images by reference which are attached to conversation in follow-up GPT-5 calls.</p>
|
| 586 |
</div>
|
| 587 |
</div>
|
| 588 |
"""
|
|
|
|
| 635 |
search_synthetize_button = gr.Button("π Search & Synthetize", variant="primary")
|
| 636 |
|
| 637 |
with gr.Column(scale=2):
|
| 638 |
+
output_docs = gr.Textbox(label="Indices", lines=1, placeholder="[0, 1, 2, ...]")
|
| 639 |
output_text = gr.Textbox(label="ColQwen+GPT-5 Answer", lines=12, placeholder="...")
|
| 640 |
|
| 641 |
+
search_button.click(image_search, inputs=[query_box, k_slider], outputs=[output_docs])
|
| 642 |
search_synthetize_button.click(search_synthetize, inputs=[query_box, k_slider], outputs=[output_text])
|
| 643 |
|
| 644 |
# ---- Tab 3: Agent (Streaming)
|
|
|
|
| 678 |
)
|
| 679 |
with gr.Row():
|
| 680 |
visual_reasoning_box = gr.Dropdown(
|
| 681 |
+
label="Reasoning Mode",
|
| 682 |
+
choices=["Visual Reasoning", "Seeded Visual Reasoning", "Visual Summary Reasoning"],
|
| 683 |
+
value="Visual Summary Reasoning",
|
| 684 |
)
|
| 685 |
|
| 686 |
with gr.Column(scale=3):
|