Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
warnings.simplefilter(action='ignore', category=FutureWarning)
|
| 3 |
+
|
| 4 |
+
import PyPDF2
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from langchain.prompts import PromptTemplate
|
| 7 |
+
from langchain.chains.summarize import load_summarize_chain
|
| 8 |
+
from huggingface_hub import login
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 12 |
+
import torch
|
| 13 |
+
import os
|
| 14 |
+
|
| 15 |
+
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
| 16 |
+
|
| 17 |
+
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
|
| 18 |
+
if huggingface_token:
|
| 19 |
+
login(token=huggingface_token)
|
| 20 |
+
|
| 21 |
+
# Configuraci贸n del modelo LLM
|
| 22 |
+
llm = HuggingFaceEndpoint(
|
| 23 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
| 24 |
+
task="text-generation",
|
| 25 |
+
max_new_tokens=4096,
|
| 26 |
+
temperature=0.5,
|
| 27 |
+
do_sample=False,
|
| 28 |
+
)
|
| 29 |
+
llm_engine_hf = ChatHuggingFace(llm=llm)
|
| 30 |
+
|
| 31 |
+
# Configuraci贸n del modelo de clasificaci贸n
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
|
| 33 |
+
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/legal-longformer-base-8192-spanish")
|
| 34 |
+
|
| 35 |
+
id2label = {0: "multas", 1: "politicas_de_privacidad", 2: "contratos", 3: "denuncias", 4: "otros"}
|
| 36 |
+
|
| 37 |
+
def read_file(file):
|
| 38 |
+
file_path = file.name
|
| 39 |
+
if file_path.endswith('.pdf'):
|
| 40 |
+
return read_pdf(file_path)
|
| 41 |
+
else:
|
| 42 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 43 |
+
return f.read()
|
| 44 |
+
|
| 45 |
+
def read_pdf(file_path):
|
| 46 |
+
pdf_reader = PyPDF2.PdfReader(file_path)
|
| 47 |
+
text = ""
|
| 48 |
+
for page in range(len(pdf_reader.pages)):
|
| 49 |
+
text += pdf_reader.pages[page].extract_text()
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
def summarize(text, summary_length):
|
| 53 |
+
if summary_length == 'Corto':
|
| 54 |
+
length_instruction = "El resumen debe tener un m谩ximo de 100 palabras."
|
| 55 |
+
elif summary_length == 'Medio':
|
| 56 |
+
length_instruction = "El resumen debe tener un m谩ximo de 500 palabras."
|
| 57 |
+
else:
|
| 58 |
+
length_instruction = "El resumen debe tener un m谩ximo de 1000 palabras."
|
| 59 |
+
|
| 60 |
+
template = f'''
|
| 61 |
+
Por favor, lea detenidamente el siguiente documento:
|
| 62 |
+
<document>
|
| 63 |
+
{{TEXT}}
|
| 64 |
+
</document>
|
| 65 |
+
Despu茅s de leer el documento, identifique los puntos clave y las ideas principales cubiertas en el texto. {length_instruction}
|
| 66 |
+
Su objetivo es ser exhaustivo en la captura del contenido central del documento, mientras que tambi茅n es conciso en la expresi贸n de cada punto del resumen. Omita los detalles menores y conc茅ntrese en los temas centrales y hechos importantes.
|
| 67 |
+
'''
|
| 68 |
+
|
| 69 |
+
prompt = PromptTemplate(
|
| 70 |
+
template=template,
|
| 71 |
+
input_variables=['TEXT']
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
formatted_prompt = prompt.format(TEXT=text)
|
| 75 |
+
output_summary = llm_engine_hf.invoke(formatted_prompt)
|
| 76 |
+
|
| 77 |
+
return output_summary.content
|
| 78 |
+
|
| 79 |
+
def classify_text(text):
|
| 80 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True, padding="max_length")
|
| 81 |
+
model.eval()
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
outputs = model(**inputs)
|
| 84 |
+
logits = outputs.logits
|
| 85 |
+
predicted_class_id = logits.argmax(dim=-1).item()
|
| 86 |
+
predicted_label = id2label[predicted_class_id]
|
| 87 |
+
return f"Clasificaci贸n: {predicted_label}"
|
| 88 |
+
|
| 89 |
+
def translate(text, target_language):
|
| 90 |
+
template = '''
|
| 91 |
+
Por favor, traduzca el siguiente documento al {LANGUAGE}:
|
| 92 |
+
<document>
|
| 93 |
+
{TEXT}
|
| 94 |
+
</document>
|
| 95 |
+
Aseg煤rese de que la traducci贸n sea precisa y conserve el significado original del documento.
|
| 96 |
+
'''
|
| 97 |
+
|
| 98 |
+
prompt = PromptTemplate(
|
| 99 |
+
template=template,
|
| 100 |
+
input_variables=['TEXT', 'LANGUAGE']
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
formatted_prompt = prompt.format(TEXT=text, LANGUAGE=target_language)
|
| 104 |
+
translated_text = llm_engine_hf.invoke(formatted_prompt)
|
| 105 |
+
|
| 106 |
+
return translated_text.content
|
| 107 |
+
|
| 108 |
+
def process_file(file, action, target_language=None, summary_length=None):
|
| 109 |
+
text = read_file(file)
|
| 110 |
+
if action == "Resumen":
|
| 111 |
+
return summarize(text, summary_length)
|
| 112 |
+
elif action == "Clasificar":
|
| 113 |
+
return classify_text(text)
|
| 114 |
+
elif action == "Traducir":
|
| 115 |
+
return translate(text, target_language)
|
| 116 |
+
else:
|
| 117 |
+
return "Acci贸n no v谩lida"
|
| 118 |
+
|
| 119 |
+
# Crear la interfaz de Gradio
|
| 120 |
+
with gr.Blocks() as demo:
|
| 121 |
+
gr.Markdown("## LexAIcon Traducci贸n, Resumen y Clasificaci贸n")
|
| 122 |
+
gr.Image("icon.jpg", width=100)
|
| 123 |
+
|
| 124 |
+
with gr.Row():
|
| 125 |
+
with gr.Column():
|
| 126 |
+
file = gr.File(label="Subir un archivo")
|
| 127 |
+
action = gr.Radio(label="Seleccione una acci贸n", choices=["Resumen", "Clasificar", "Traducir"])
|
| 128 |
+
summary_length = gr.Radio(label="Seleccione la longitud del resumen", choices=["Corto", "Medio", "Largo"], visible=False)
|
| 129 |
+
target_language = gr.Dropdown(label="Seleccionar idioma de traducci贸n", choices=["en", "fr", "de"], visible=False)
|
| 130 |
+
|
| 131 |
+
with gr.Column():
|
| 132 |
+
output_text = gr.Textbox(label="Resultado", lines=60)
|
| 133 |
+
|
| 134 |
+
def update_ui(action):
|
| 135 |
+
if action == "Traducir":
|
| 136 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 137 |
+
elif action == "Resumen":
|
| 138 |
+
return gr.update(visible=True), gr.update(visible(False))
|
| 139 |
+
elif action == "Clasificar":
|
| 140 |
+
return gr.update(visible(False)), gr.update(visible=False)
|
| 141 |
+
else:
|
| 142 |
+
return gr.update(visible=False), gr.update(visible(False))
|
| 143 |
+
|
| 144 |
+
action.change(update_ui, inputs=action, outputs=[summary_length, target_language])
|
| 145 |
+
|
| 146 |
+
submit_button = gr.Button("Procesar")
|
| 147 |
+
submit_button.click(process_file, inputs=[file, action, target_language, summary_length], outputs=output_text)
|
| 148 |
+
|
| 149 |
+
# Ejecutar la aplicaci贸n Gradio
|
| 150 |
+
demo.launch(share=True)
|