Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +24 -0
- keyword_extractor.py +101 -0
- requirements.txt +12 -0
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from keyword_extractor import KeywordExtractor
|
| 3 |
+
|
| 4 |
+
extractor = KeywordExtractor()
|
| 5 |
+
|
| 6 |
+
def extract_keywords(text):
|
| 7 |
+
if not text.strip():
|
| 8 |
+
return "Please enter a valid abstract."
|
| 9 |
+
keywords = extractor.extract(text)
|
| 10 |
+
return ", ".join(keywords)
|
| 11 |
+
|
| 12 |
+
demo = gr.Interface(
|
| 13 |
+
fn=extract_keywords,
|
| 14 |
+
inputs=gr.Textbox(lines=10, label="Enter Abstract"),
|
| 15 |
+
outputs=gr.Textbox(label="Extracted Keywords"),
|
| 16 |
+
title="Scientific Keyword Extractor",
|
| 17 |
+
description="Extract domain-specific keywords from scientific abstracts using BioBERT + KeyBERT + UMAP/HDBSCAN.",
|
| 18 |
+
examples=[
|
| 19 |
+
["This study investigates the role of gene expression in patients with chronic kidney disease using machine learning techniques..."],
|
| 20 |
+
]
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
if __name__ == "__main__":
|
| 24 |
+
demo.launch()
|
keyword_extractor.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import spacy
|
| 3 |
+
import nltk
|
| 4 |
+
import numpy as np
|
| 5 |
+
from keybert import KeyBERT
|
| 6 |
+
from sentence_transformers import SentenceTransformer, util
|
| 7 |
+
import umap
|
| 8 |
+
import hdbscan
|
| 9 |
+
|
| 10 |
+
# Ensure required NLTK data is downloaded
|
| 11 |
+
nltk.download("punkt")
|
| 12 |
+
|
| 13 |
+
class KeywordExtractor:
|
| 14 |
+
def __init__(self):
|
| 15 |
+
self.biobert = SentenceTransformer("dmis-lab/biobert-base-cased-v1.1")
|
| 16 |
+
self.keybert_model = KeyBERT(model="all-MiniLM-L6-v2")
|
| 17 |
+
self.nlp = spacy.load("en_core_web_sm")
|
| 18 |
+
self.domain_stopwords = set([
|
| 19 |
+
"study", "result", "results", "conclusion", "method", "methods", "patients",
|
| 20 |
+
"data", "analysis", "significant", "treatment", "effect", "effects", "disease",
|
| 21 |
+
"clinical", "used", "use", "using", "based", "approach", "research", "paper"
|
| 22 |
+
])
|
| 23 |
+
|
| 24 |
+
def clean_text(self, text):
|
| 25 |
+
return re.sub(r"\s+", " ", str(text).strip())
|
| 26 |
+
|
| 27 |
+
def extract_noun_chunks(self, text):
|
| 28 |
+
doc = self.nlp(text)
|
| 29 |
+
return list(set([
|
| 30 |
+
chunk.text.lower().strip()
|
| 31 |
+
for chunk in doc.noun_chunks
|
| 32 |
+
if len(chunk.text.split()) <= 5
|
| 33 |
+
]))
|
| 34 |
+
|
| 35 |
+
def get_keybert_candidates(self, text, top_k=50):
|
| 36 |
+
keywords = self.keybert_model.extract_keywords(
|
| 37 |
+
text,
|
| 38 |
+
keyphrase_ngram_range=(1, 3),
|
| 39 |
+
stop_words="english",
|
| 40 |
+
use_mmr=True,
|
| 41 |
+
diversity=0.7,
|
| 42 |
+
top_n=top_k
|
| 43 |
+
)
|
| 44 |
+
return [kw[0] for kw in keywords]
|
| 45 |
+
|
| 46 |
+
def reduce_dimensions_umap(self, embeddings, n_neighbors=15, min_dist=0.1):
|
| 47 |
+
reducer = umap.UMAP(n_components=2, n_neighbors=n_neighbors, min_dist=min_dist)
|
| 48 |
+
return reducer.fit_transform(embeddings)
|
| 49 |
+
|
| 50 |
+
def cluster_with_umap_hdbscan(self, candidates):
|
| 51 |
+
if len(candidates) <= 5:
|
| 52 |
+
return candidates
|
| 53 |
+
|
| 54 |
+
embeddings = self.biobert.encode(candidates)
|
| 55 |
+
reduced = self.reduce_dimensions_umap(embeddings)
|
| 56 |
+
|
| 57 |
+
clusterer = hdbscan.HDBSCAN(min_cluster_size=2)
|
| 58 |
+
labels = clusterer.fit_predict(reduced)
|
| 59 |
+
|
| 60 |
+
final_keywords = []
|
| 61 |
+
for cluster_id in set(labels):
|
| 62 |
+
if cluster_id == -1:
|
| 63 |
+
continue
|
| 64 |
+
cluster_indices = np.where(labels == cluster_id)[0]
|
| 65 |
+
cluster_embs = [embeddings[i] for i in cluster_indices]
|
| 66 |
+
center = np.mean(cluster_embs, axis=0)
|
| 67 |
+
sims = util.cos_sim(center, cluster_embs)[0].cpu().numpy()
|
| 68 |
+
rep_idx = cluster_indices[np.argmax(sims)]
|
| 69 |
+
final_keywords.append(candidates[rep_idx])
|
| 70 |
+
return final_keywords
|
| 71 |
+
|
| 72 |
+
def rerank_with_biobert(self, text, candidates, top_k=15):
|
| 73 |
+
if not candidates:
|
| 74 |
+
return []
|
| 75 |
+
|
| 76 |
+
text_emb = self.biobert.encode(text, convert_to_tensor=True)
|
| 77 |
+
cand_emb = self.biobert.encode(candidates, convert_to_tensor=True)
|
| 78 |
+
|
| 79 |
+
scores = util.cos_sim(text_emb, cand_emb)[0].cpu().numpy()
|
| 80 |
+
ranked = np.argsort(scores)[::-1][:top_k]
|
| 81 |
+
return [candidates[i] for i in ranked]
|
| 82 |
+
|
| 83 |
+
def lemmatize_keywords(self, keywords):
|
| 84 |
+
return list(set([
|
| 85 |
+
token.lemma_.lower().strip()
|
| 86 |
+
for kw in keywords
|
| 87 |
+
for token in self.nlp(kw)
|
| 88 |
+
if token.is_alpha and len(token) > 2 and not token.is_stop and token.lemma_.lower() not in self.domain_stopwords
|
| 89 |
+
]))
|
| 90 |
+
|
| 91 |
+
def extract(self, text: str):
|
| 92 |
+
text = self.clean_text(text)
|
| 93 |
+
noun_chunks = self.extract_noun_chunks(text)
|
| 94 |
+
kb_candidates = self.get_keybert_candidates(text, top_k=50)
|
| 95 |
+
all_candidates = list(set(noun_chunks + kb_candidates))
|
| 96 |
+
|
| 97 |
+
reranked = self.rerank_with_biobert(text, all_candidates, top_k=15)
|
| 98 |
+
clustered_keywords = self.cluster_with_umap_hdbscan(reranked)
|
| 99 |
+
final_keywords = self.lemmatize_keywords(clustered_keywords)
|
| 100 |
+
|
| 101 |
+
return final_keywords
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
spacy
|
| 3 |
+
nltk
|
| 4 |
+
numpy
|
| 5 |
+
keybert
|
| 6 |
+
sentence-transformers
|
| 7 |
+
umap-learn
|
| 8 |
+
hdbscan
|
| 9 |
+
scikit-learn
|
| 10 |
+
torch
|
| 11 |
+
transformers
|
| 12 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
|