Spaces:
Sleeping
Sleeping
Miquel Farré
commited on
Commit
·
3a79668
1
Parent(s):
b0d1f70
v1
Browse files- app.py +283 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import tempfile
|
| 7 |
+
import os
|
| 8 |
+
import shutil
|
| 9 |
+
|
| 10 |
+
def edge_directed_antialiasing(img, power=2.0):
|
| 11 |
+
"""
|
| 12 |
+
Apply edge-directed anti-aliasing with adjustable power
|
| 13 |
+
|
| 14 |
+
Parameters:
|
| 15 |
+
- img: Input image (numpy array)
|
| 16 |
+
- power: Anti-aliasing strength (1.0 is standard, higher values increase the effect)
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
- Output image with anti-aliasing applied
|
| 20 |
+
"""
|
| 21 |
+
# If image has alpha channel, separate it
|
| 22 |
+
has_alpha = img.shape[2] == 4 if len(img.shape) > 2 else False
|
| 23 |
+
if has_alpha:
|
| 24 |
+
bgr = img[:, :, :3]
|
| 25 |
+
alpha = img[:, :, 3]
|
| 26 |
+
else:
|
| 27 |
+
bgr = img
|
| 28 |
+
# Create binary mask from grayscale image if no alpha
|
| 29 |
+
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
|
| 30 |
+
_, alpha = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
|
| 31 |
+
|
| 32 |
+
# Convert to grayscale for edge detection
|
| 33 |
+
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
|
| 34 |
+
|
| 35 |
+
# Step 1: Detect edges using Canny
|
| 36 |
+
# Lower thresholds to catch more edges when power is high
|
| 37 |
+
canny_threshold1 = int(100 / power) # Lower threshold when power is high
|
| 38 |
+
canny_threshold2 = int(200 / power) # Lower threshold when power is high
|
| 39 |
+
edges = cv2.Canny(gray, canny_threshold1, canny_threshold2)
|
| 40 |
+
|
| 41 |
+
# Dilate edges more when power is high
|
| 42 |
+
kernel_size = int(3 * power) # Increase kernel size with power
|
| 43 |
+
kernel_size = max(3, kernel_size if kernel_size % 2 == 1 else kernel_size + 1) # Ensure odd kernel size
|
| 44 |
+
kernel = np.ones((kernel_size, kernel_size), np.uint8)
|
| 45 |
+
|
| 46 |
+
# More iterations for higher power
|
| 47 |
+
dilation_iterations = max(1, int(power))
|
| 48 |
+
dilated_edges = cv2.dilate(edges, kernel, iterations=dilation_iterations)
|
| 49 |
+
|
| 50 |
+
# Step 2: Calculate gradient direction using Sobel
|
| 51 |
+
# Increase kernel size for higher power
|
| 52 |
+
sobel_ksize = 3
|
| 53 |
+
if power > 2.0:
|
| 54 |
+
sobel_ksize = 5
|
| 55 |
+
if power > 3.0:
|
| 56 |
+
sobel_ksize = 7
|
| 57 |
+
|
| 58 |
+
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_ksize)
|
| 59 |
+
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_ksize)
|
| 60 |
+
|
| 61 |
+
# Calculate gradient magnitude and direction
|
| 62 |
+
magnitude = np.sqrt(sobelx**2 + sobely**2)
|
| 63 |
+
direction = np.arctan2(sobely, sobelx) * 180 / np.pi
|
| 64 |
+
|
| 65 |
+
# Create output image, starting with the original
|
| 66 |
+
output = bgr.copy()
|
| 67 |
+
h, w = output.shape[:2]
|
| 68 |
+
|
| 69 |
+
# Step 3: Apply targeted smoothing along edge directions
|
| 70 |
+
# Sample farther away for higher power
|
| 71 |
+
radius = max(1, int(power))
|
| 72 |
+
|
| 73 |
+
edge_pixels = np.where(dilated_edges > 0)
|
| 74 |
+
for y, x in zip(edge_pixels[0], edge_pixels[1]):
|
| 75 |
+
# Skip border pixels
|
| 76 |
+
if x < radius or y < radius or x >= w-radius or y >= h-radius:
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
# Get local direction (perpendicular to gradient)
|
| 80 |
+
local_dir = direction[y, x] + 90
|
| 81 |
+
if local_dir > 180:
|
| 82 |
+
local_dir -= 360
|
| 83 |
+
|
| 84 |
+
# Normalize direction to 0-180 degrees
|
| 85 |
+
local_dir = ((local_dir + 180) % 180)
|
| 86 |
+
|
| 87 |
+
# Determine interpolation direction based on edge angle
|
| 88 |
+
if 22.5 <= local_dir < 67.5: # ~45 degree diagonal
|
| 89 |
+
# Diagonal top-left to bottom-right
|
| 90 |
+
neighbors = [(y-radius, x-radius), (y+radius, x+radius)]
|
| 91 |
+
weights = [0.5, 0.5]
|
| 92 |
+
elif 67.5 <= local_dir < 112.5: # Vertical
|
| 93 |
+
# Top to bottom
|
| 94 |
+
neighbors = [(y-radius, x), (y+radius, x)]
|
| 95 |
+
weights = [0.5, 0.5]
|
| 96 |
+
elif 112.5 <= local_dir < 157.5: # ~135 degree diagonal
|
| 97 |
+
# Diagonal top-right to bottom-left
|
| 98 |
+
neighbors = [(y-radius, x+radius), (y+radius, x-radius)]
|
| 99 |
+
weights = [0.5, 0.5]
|
| 100 |
+
else: # Horizontal
|
| 101 |
+
# Left to right
|
| 102 |
+
neighbors = [(y, x-radius), (y, x+radius)]
|
| 103 |
+
weights = [0.5, 0.5]
|
| 104 |
+
|
| 105 |
+
# Only interpolate if we're between different colors (at the border)
|
| 106 |
+
center_value = gray[y, x]
|
| 107 |
+
neighbor_values = [gray[ny, nx] for ny, nx in neighbors]
|
| 108 |
+
|
| 109 |
+
# Lower contrast threshold when power is high
|
| 110 |
+
contrast_threshold = int(50 / power)
|
| 111 |
+
|
| 112 |
+
# Check if this is an edge between very different values
|
| 113 |
+
if abs(neighbor_values[0] - neighbor_values[1]) > contrast_threshold:
|
| 114 |
+
# Apply interpolation based on local contrast
|
| 115 |
+
for c in range(3): # RGB channels
|
| 116 |
+
weighted_sum = sum(weights[i] * bgr[ny, nx, c] for i, (ny, nx) in enumerate(neighbors))
|
| 117 |
+
# More interpolation weight when power is high
|
| 118 |
+
blend_factor = min(0.9, 0.3 * power)
|
| 119 |
+
# Apply it with a blend factor to preserve some original detail
|
| 120 |
+
output[y, x, c] = int((1-blend_factor) * weighted_sum + blend_factor * bgr[y, x, c])
|
| 121 |
+
|
| 122 |
+
# Update alpha channel with the same smoothing for edges
|
| 123 |
+
if has_alpha:
|
| 124 |
+
new_alpha = alpha.copy()
|
| 125 |
+
|
| 126 |
+
# Apply a specific smoothing to the alpha channel's edges
|
| 127 |
+
alpha_edges = cv2.Canny(alpha, int(100/power), int(200/power))
|
| 128 |
+
|
| 129 |
+
# More dilation iterations for stronger effect
|
| 130 |
+
alpha_dilation_iter = max(2, int(power * 2))
|
| 131 |
+
dilated_alpha_edges = cv2.dilate(alpha_edges, kernel, iterations=alpha_dilation_iter)
|
| 132 |
+
|
| 133 |
+
# Radius for sampling neighborhood
|
| 134 |
+
alpha_radius = max(2, int(power * 2))
|
| 135 |
+
|
| 136 |
+
# For each edge pixel in alpha
|
| 137 |
+
alpha_edge_pixels = np.where(dilated_alpha_edges > 0)
|
| 138 |
+
for y, x in zip(alpha_edge_pixels[0], alpha_edge_pixels[1]):
|
| 139 |
+
if x < alpha_radius or y < alpha_radius or x >= w-alpha_radius or y >= h-alpha_radius:
|
| 140 |
+
continue
|
| 141 |
+
|
| 142 |
+
# Use a larger neighborhood for better smoothing of alpha edges
|
| 143 |
+
# Size increases with power
|
| 144 |
+
window_radius = alpha_radius
|
| 145 |
+
neighborhood = alpha[y-window_radius:y+window_radius+1, x-window_radius:x+window_radius+1].astype(np.float32)
|
| 146 |
+
|
| 147 |
+
# Generate gaussian-like weights based on distance from center
|
| 148 |
+
kernel_size = 2 * window_radius + 1
|
| 149 |
+
weight_matrix = np.zeros((kernel_size, kernel_size), dtype=np.float32)
|
| 150 |
+
|
| 151 |
+
# Create distance-based weights
|
| 152 |
+
center = window_radius
|
| 153 |
+
for wy in range(kernel_size):
|
| 154 |
+
for wx in range(kernel_size):
|
| 155 |
+
# Calculate distance from center
|
| 156 |
+
dist = np.sqrt((wy - center)**2 + (wx - center)**2)
|
| 157 |
+
# Adjust falloff based on power
|
| 158 |
+
falloff = 1.0 / power
|
| 159 |
+
# Gaussian-like weight
|
| 160 |
+
weight_matrix[wy, wx] = np.exp(-(dist**2) / (2 * (window_radius * falloff)**2))
|
| 161 |
+
|
| 162 |
+
# Normalize weights
|
| 163 |
+
weight_matrix = weight_matrix / weight_matrix.sum()
|
| 164 |
+
|
| 165 |
+
# Apply weighted average
|
| 166 |
+
new_alpha[y, x] = int(np.sum(neighborhood * weight_matrix))
|
| 167 |
+
|
| 168 |
+
# Merge BGR with new alpha
|
| 169 |
+
output = np.dstack([output, new_alpha])
|
| 170 |
+
|
| 171 |
+
return output
|
| 172 |
+
|
| 173 |
+
def save_as_jpg(img, file_path):
|
| 174 |
+
"""
|
| 175 |
+
Save image as JPG with high quality
|
| 176 |
+
"""
|
| 177 |
+
# If image has alpha channel, blend with white background
|
| 178 |
+
if len(img.shape) > 2 and img.shape[2] == 4:
|
| 179 |
+
bgr = img[:, :, :3]
|
| 180 |
+
alpha = img[:, :, 3].astype(float) / 255
|
| 181 |
+
|
| 182 |
+
# Create white background
|
| 183 |
+
bg = np.ones_like(bgr) * 255
|
| 184 |
+
|
| 185 |
+
# Blend with background
|
| 186 |
+
alpha = np.expand_dims(alpha, axis=2)
|
| 187 |
+
alpha = np.repeat(alpha, 3, axis=2)
|
| 188 |
+
result = (bgr * alpha + bg * (1 - alpha)).astype(np.uint8)
|
| 189 |
+
else:
|
| 190 |
+
result = img
|
| 191 |
+
|
| 192 |
+
# Save as JPG
|
| 193 |
+
cv2.imwrite(file_path, result, [cv2.IMWRITE_JPEG_QUALITY, 95])
|
| 194 |
+
return file_path
|
| 195 |
+
|
| 196 |
+
def create_output_dirs():
|
| 197 |
+
"""Create necessary output directories"""
|
| 198 |
+
output_dir = os.path.join(tempfile.gettempdir(), "antialiasing_output")
|
| 199 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 200 |
+
return output_dir
|
| 201 |
+
|
| 202 |
+
def process_image(input_image):
|
| 203 |
+
"""
|
| 204 |
+
Process image function for Gradio interface
|
| 205 |
+
"""
|
| 206 |
+
# Create output directory for our files
|
| 207 |
+
output_dir = create_output_dirs()
|
| 208 |
+
|
| 209 |
+
# Convert from RGB (Gradio) to BGR (OpenCV)
|
| 210 |
+
img_bgr = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
|
| 211 |
+
|
| 212 |
+
# Apply edge directed anti-aliasing with power=2.0
|
| 213 |
+
processed_bgr = edge_directed_antialiasing(img_bgr, power=2.0)
|
| 214 |
+
|
| 215 |
+
# Save the processed image explicitly as JPG
|
| 216 |
+
jpg_path = os.path.join(output_dir, "antialiased_image.jpg")
|
| 217 |
+
save_as_jpg(processed_bgr, jpg_path)
|
| 218 |
+
|
| 219 |
+
# Convert back to RGB for display in Gradio
|
| 220 |
+
if processed_bgr.shape[2] == 4: # Has alpha channel
|
| 221 |
+
# Blend with white background
|
| 222 |
+
bg = np.ones_like(processed_bgr[:,:,:3]) * 255
|
| 223 |
+
alpha = processed_bgr[:,:,3]
|
| 224 |
+
alpha_norm = alpha.astype(float) / 255
|
| 225 |
+
alpha_norm = np.expand_dims(alpha_norm, axis=2)
|
| 226 |
+
alpha_norm = np.repeat(alpha_norm, 3, axis=2)
|
| 227 |
+
|
| 228 |
+
processed_rgb = processed_bgr[:,:,:3] * alpha_norm + bg * (1 - alpha_norm)
|
| 229 |
+
processed_rgb = processed_rgb.astype(np.uint8)
|
| 230 |
+
else:
|
| 231 |
+
processed_rgb = cv2.cvtColor(processed_bgr, cv2.COLOR_BGR2RGB)
|
| 232 |
+
|
| 233 |
+
# Create comparison visualization
|
| 234 |
+
h, w = input_image.shape[:2]
|
| 235 |
+
dpi = 100
|
| 236 |
+
plt.figure(figsize=(w*2/dpi, h/dpi), dpi=dpi)
|
| 237 |
+
|
| 238 |
+
plt.subplot(1, 2, 1)
|
| 239 |
+
plt.imshow(input_image)
|
| 240 |
+
plt.title("Original")
|
| 241 |
+
plt.axis('off')
|
| 242 |
+
|
| 243 |
+
plt.subplot(1, 2, 2)
|
| 244 |
+
plt.imshow(processed_rgb)
|
| 245 |
+
plt.title("Anti-aliased (Power = 2.0)")
|
| 246 |
+
plt.axis('off')
|
| 247 |
+
|
| 248 |
+
plt.tight_layout()
|
| 249 |
+
|
| 250 |
+
# Save the comparison
|
| 251 |
+
comparison_file = os.path.join(output_dir, "comparison.jpg")
|
| 252 |
+
plt.savefig(comparison_file, dpi=dpi, bbox_inches='tight')
|
| 253 |
+
plt.close()
|
| 254 |
+
|
| 255 |
+
return processed_rgb, jpg_path, comparison_file
|
| 256 |
+
|
| 257 |
+
# Create Gradio interface
|
| 258 |
+
with gr.Blocks(title="Edge-Directed Anti-Aliasing") as app:
|
| 259 |
+
gr.Markdown("# Edge-Directed Anti-Aliasing Tool")
|
| 260 |
+
gr.Markdown("Upload an image and apply edge-directed anti-aliasing to smooth jagged edges.")
|
| 261 |
+
|
| 262 |
+
with gr.Row():
|
| 263 |
+
input_image = gr.Image(label="Upload Image", type="numpy")
|
| 264 |
+
output_image = gr.Image(label="Anti-Aliased Result", type="numpy")
|
| 265 |
+
|
| 266 |
+
with gr.Row():
|
| 267 |
+
process_button = gr.Button("Apply Anti-Aliasing (Power = 2.0)")
|
| 268 |
+
|
| 269 |
+
with gr.Row():
|
| 270 |
+
download_jpg = gr.File(label="Download Anti-Aliased JPG", type="filepath")
|
| 271 |
+
comparison_view = gr.Image(label="Comparison", type="filepath")
|
| 272 |
+
|
| 273 |
+
# Process button functionality
|
| 274 |
+
process_button.click(
|
| 275 |
+
fn=process_image,
|
| 276 |
+
inputs=[input_image],
|
| 277 |
+
outputs=[output_image, download_jpg, comparison_view]
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# Launch the app
|
| 282 |
+
if __name__ == "__main__":
|
| 283 |
+
app.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
opencv-python
|
| 3 |
+
numpy
|
| 4 |
+
matplotlib
|