Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import io
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import streamlit as st
|
|
@@ -7,102 +6,131 @@ from chronos import BaseChronosPipeline
|
|
| 7 |
|
| 8 |
st.set_page_config(page_title="Chronos-Bolt Zero-Shot Forecast", layout="centered")
|
| 9 |
st.title("Chronos-Bolt Zero-Shot Forecast")
|
| 10 |
-
st.caption("
|
| 11 |
|
| 12 |
-
#
|
| 13 |
MODEL_CHOICES = {
|
| 14 |
-
"Bolt Mini (
|
| 15 |
-
"Bolt Small (better
|
| 16 |
}
|
| 17 |
-
DEFAULT_MODEL = "Bolt Mini (fast, CPU-friendly)"
|
| 18 |
|
| 19 |
-
# --------- HELPERS ---------
|
| 20 |
@st.cache_resource(show_spinner=True)
|
| 21 |
def load_pipeline(model_id: str):
|
| 22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 23 |
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 24 |
-
return BaseChronosPipeline.from_pretrained(
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@st.cache_data(show_spinner=False)
|
| 29 |
def load_ticker_series(ticker: str, period: str = "2y"):
|
| 30 |
import yfinance as yf
|
| 31 |
-
df = yf.download(ticker, period=period, interval="1d", progress=False)
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def parse_pasted_series(txt: str):
|
|
|
|
|
|
|
| 36 |
vals = []
|
| 37 |
-
for
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
model_label = st.selectbox("Model", list(MODEL_CHOICES.keys()), index=0)
|
| 50 |
-
with
|
| 51 |
-
pred_len = st.number_input("Prediction length (steps)", 1,
|
| 52 |
|
| 53 |
-
src = st.radio("Data source", ["Ticker (yfinance)", "Paste numbers"], horizontal=True)
|
| 54 |
|
| 55 |
series = None
|
| 56 |
if src == "Ticker (yfinance)":
|
| 57 |
-
t1, t2 = st.columns([2,1])
|
| 58 |
with t1:
|
| 59 |
ticker = st.text_input("Ticker (e.g., AAPL, SPY, BTC-USD)", "AAPL")
|
| 60 |
with t2:
|
| 61 |
period = st.selectbox("History window", ["6mo", "1y", "2y", "5y"], index=2)
|
| 62 |
if st.button("Load data"):
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
| 68 |
else:
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
| 72 |
if series is not None and series.size > 5:
|
| 73 |
st.write(f"Loaded {series.size} points.")
|
| 74 |
-
st.line_chart(pd.DataFrame(
|
| 75 |
|
| 76 |
if st.button("Forecast"):
|
| 77 |
with st.spinner("Running Chronos-Bolt..."):
|
| 78 |
-
|
| 79 |
-
pipe = load_pipeline(model_id)
|
| 80 |
-
|
| 81 |
ctx = torch.tensor(series, dtype=torch.float32)
|
| 82 |
q_levels = [0.10, 0.50, 0.90]
|
| 83 |
-
|
| 84 |
quantiles, mean = pipe.predict_quantiles(
|
| 85 |
context=ctx,
|
| 86 |
prediction_length=int(pred_len),
|
| 87 |
quantile_levels=q_levels,
|
| 88 |
)
|
| 89 |
|
| 90 |
-
|
| 91 |
-
lo, med, hi =
|
| 92 |
|
| 93 |
-
# Plot
|
| 94 |
import matplotlib.pyplot as plt
|
| 95 |
hist_x = np.arange(len(series))
|
| 96 |
-
fut_x = np.arange(len(series), len(series) + pred_len)
|
| 97 |
|
| 98 |
fig = plt.figure(figsize=(9, 4.5))
|
| 99 |
plt.plot(hist_x, series, label="history")
|
| 100 |
plt.plot(fut_x, med, label="median forecast")
|
| 101 |
-
plt.fill_between(fut_x, lo, hi, alpha=0.3, label="q10–q90
|
| 102 |
plt.legend()
|
| 103 |
plt.grid(True, alpha=0.3)
|
| 104 |
st.pyplot(fig)
|
| 105 |
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
else:
|
| 108 |
-
st.info("Load a ticker
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
import streamlit as st
|
|
|
|
| 6 |
|
| 7 |
st.set_page_config(page_title="Chronos-Bolt Zero-Shot Forecast", layout="centered")
|
| 8 |
st.title("Chronos-Bolt Zero-Shot Forecast")
|
| 9 |
+
st.caption("Zero-shot probabilistic forecasting (q10/q50/q90) using amazon/chronos-bolt-* models.")
|
| 10 |
|
| 11 |
+
# -------------------- Model options --------------------
|
| 12 |
MODEL_CHOICES = {
|
| 13 |
+
"Bolt Mini (CPU-friendly)": "amazon/chronos-bolt-mini",
|
| 14 |
+
"Bolt Small (better; GPU if available)": "amazon/chronos-bolt-small",
|
| 15 |
}
|
|
|
|
| 16 |
|
|
|
|
| 17 |
@st.cache_resource(show_spinner=True)
|
| 18 |
def load_pipeline(model_id: str):
|
| 19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 20 |
dtype = torch.bfloat16 if device == "cuda" else torch.float32
|
| 21 |
+
return BaseChronosPipeline.from_pretrained(model_id, device_map=device, torch_dtype=dtype)
|
| 22 |
+
|
| 23 |
+
# -------------------- Data loaders (always return 1-D) --------------------
|
| 24 |
+
def _force_1d(a):
|
| 25 |
+
a = pd.Series(a, dtype="float32").replace([np.inf, -np.inf], np.nan).dropna()
|
| 26 |
+
return a.to_numpy().reshape(-1)
|
| 27 |
|
| 28 |
@st.cache_data(show_spinner=False)
|
| 29 |
def load_ticker_series(ticker: str, period: str = "2y"):
|
| 30 |
import yfinance as yf
|
| 31 |
+
df = yf.download(ticker, period=period, interval="1d", auto_adjust=True, progress=False)
|
| 32 |
+
if df.empty:
|
| 33 |
+
return np.asarray([], dtype="float32")
|
| 34 |
+
close = df["Close"]
|
| 35 |
+
if isinstance(close, pd.DataFrame): # handle rare multi-index cases
|
| 36 |
+
close = close.iloc[:, 0]
|
| 37 |
+
return _force_1d(close)
|
| 38 |
|
| 39 |
def parse_pasted_series(txt: str):
|
| 40 |
+
import re
|
| 41 |
+
toks = re.split(r"[,\s]+", txt.strip())
|
| 42 |
vals = []
|
| 43 |
+
for t in toks:
|
| 44 |
+
if not t:
|
| 45 |
+
continue
|
| 46 |
+
try:
|
| 47 |
+
vals.append(float(t))
|
| 48 |
+
except:
|
| 49 |
+
pass
|
| 50 |
+
return _force_1d(vals)
|
| 51 |
+
|
| 52 |
+
def load_csv_series(file, column=None):
|
| 53 |
+
df = pd.read_csv(file)
|
| 54 |
+
if column is None:
|
| 55 |
+
num_cols = [c for c in df.columns if np.issubdtype(df[c].dtype, np.number)]
|
| 56 |
+
column = num_cols[0] if num_cols else None
|
| 57 |
+
if column is None:
|
| 58 |
+
return np.asarray([], dtype="float32"), df, None
|
| 59 |
+
return _force_1d(df[column]), df, column
|
| 60 |
+
|
| 61 |
+
# -------------------- UI --------------------
|
| 62 |
+
c1, c2 = st.columns(2)
|
| 63 |
+
with c1:
|
| 64 |
model_label = st.selectbox("Model", list(MODEL_CHOICES.keys()), index=0)
|
| 65 |
+
with c2:
|
| 66 |
+
pred_len = st.number_input("Prediction length (steps)", 1, 365, 30)
|
| 67 |
|
| 68 |
+
src = st.radio("Data source", ["Ticker (yfinance)", "Paste numbers", "Upload CSV"], horizontal=True)
|
| 69 |
|
| 70 |
series = None
|
| 71 |
if src == "Ticker (yfinance)":
|
| 72 |
+
t1, t2 = st.columns([2, 1])
|
| 73 |
with t1:
|
| 74 |
ticker = st.text_input("Ticker (e.g., AAPL, SPY, BTC-USD)", "AAPL")
|
| 75 |
with t2:
|
| 76 |
period = st.selectbox("History window", ["6mo", "1y", "2y", "5y"], index=2)
|
| 77 |
if st.button("Load data"):
|
| 78 |
+
series = load_ticker_series(ticker.strip(), period)
|
| 79 |
+
if series.size == 0:
|
| 80 |
+
st.error("No data returned. Try another ticker/window.")
|
| 81 |
+
elif src == "Paste numbers":
|
| 82 |
+
txt = st.text_area("One value per line (or comma/space separated)", "1\n2\n3\n4\n5\n6\n7\n8\n9\n10")
|
| 83 |
+
if st.button("Use pasted data"):
|
| 84 |
+
series = parse_pasted_series(txt)
|
| 85 |
else:
|
| 86 |
+
uploaded = st.file_uploader("Upload CSV", type=["csv"])
|
| 87 |
+
if uploaded is not None:
|
| 88 |
+
df = pd.read_csv(uploaded)
|
| 89 |
+
numeric_cols = [c for c in df.columns if np.issubdtype(df[c].dtype, np.number)]
|
| 90 |
+
col = st.selectbox("Pick numeric column", numeric_cols) if numeric_cols else None
|
| 91 |
+
if st.button("Load CSV column") and col:
|
| 92 |
+
series, _, _ = load_csv_series(uploaded, column=col)
|
| 93 |
+
elif uploaded and not numeric_cols:
|
| 94 |
+
st.error("No numeric columns found in CSV.")
|
| 95 |
|
| 96 |
+
# -------------------- Plot + Forecast --------------------
|
| 97 |
if series is not None and series.size > 5:
|
| 98 |
st.write(f"Loaded {series.size} points.")
|
| 99 |
+
st.line_chart(pd.DataFrame(series, columns=["value"])) # always 1-D -> no error
|
| 100 |
|
| 101 |
if st.button("Forecast"):
|
| 102 |
with st.spinner("Running Chronos-Bolt..."):
|
| 103 |
+
pipe = load_pipeline(MODEL_CHOICES[model_label])
|
|
|
|
|
|
|
| 104 |
ctx = torch.tensor(series, dtype=torch.float32)
|
| 105 |
q_levels = [0.10, 0.50, 0.90]
|
| 106 |
+
|
| 107 |
quantiles, mean = pipe.predict_quantiles(
|
| 108 |
context=ctx,
|
| 109 |
prediction_length=int(pred_len),
|
| 110 |
quantile_levels=q_levels,
|
| 111 |
)
|
| 112 |
|
| 113 |
+
q_np = quantiles[0].cpu().numpy() # shape [pred_len, 3]
|
| 114 |
+
lo, med, hi = q_np[:, 0], q_np[:, 1], q_np[:, 2]
|
| 115 |
|
|
|
|
| 116 |
import matplotlib.pyplot as plt
|
| 117 |
hist_x = np.arange(len(series))
|
| 118 |
+
fut_x = np.arange(len(series), len(series) + int(pred_len))
|
| 119 |
|
| 120 |
fig = plt.figure(figsize=(9, 4.5))
|
| 121 |
plt.plot(hist_x, series, label="history")
|
| 122 |
plt.plot(fut_x, med, label="median forecast")
|
| 123 |
+
plt.fill_between(fut_x, lo, hi, alpha=0.3, label="q10–q90 band")
|
| 124 |
plt.legend()
|
| 125 |
plt.grid(True, alpha=0.3)
|
| 126 |
st.pyplot(fig)
|
| 127 |
|
| 128 |
+
out = pd.DataFrame({"t": fut_x, "q10": lo, "q50": med, "q90": hi})
|
| 129 |
+
st.download_button(
|
| 130 |
+
"Download forecast CSV",
|
| 131 |
+
out.to_csv(index=False).encode("utf-8"),
|
| 132 |
+
file_name="chronos_forecast.csv",
|
| 133 |
+
mime="text/csv",
|
| 134 |
+
)
|
| 135 |
else:
|
| 136 |
+
st.info("Load a ticker, paste values, or upload a CSV to begin.")
|