Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import os
|
| 4 |
+
import faiss
|
| 5 |
+
import numpy as np
|
| 6 |
+
import json
|
| 7 |
+
from fastapi import FastAPI, Request
|
| 8 |
+
from pydantic import BaseModel
|
| 9 |
+
from sentence_transformers import SentenceTransformer
|
| 10 |
+
|
| 11 |
+
# ✅ Load vector data
|
| 12 |
+
with open("texts.json", "r", encoding="utf-8") as f:
|
| 13 |
+
texts = json.load(f)
|
| 14 |
+
|
| 15 |
+
index = faiss.read_index("faiss_index.bin")
|
| 16 |
+
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
| 17 |
+
|
| 18 |
+
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
| 19 |
+
MODEL = "qwen/qwen-2.5-coder-32b-instruct:free"
|
| 20 |
+
|
| 21 |
+
# ✅ Semantic search
|
| 22 |
+
def get_context(query, top_k=5):
|
| 23 |
+
query_vec = embed_model.encode([query])
|
| 24 |
+
D, I = index.search(np.array(query_vec), top_k)
|
| 25 |
+
return "\n".join([texts[i] for i in I[0]])
|
| 26 |
+
|
| 27 |
+
# ✅ Chatbot response
|
| 28 |
+
def chat_fn(message, history):
|
| 29 |
+
headers = {
|
| 30 |
+
"Authorization": f"Bearer {API_KEY}",
|
| 31 |
+
"Content-Type": "application/json"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
context = get_context(message)
|
| 35 |
+
messages = [{"role": "system", "content": f"You are CODEX Assistant by Mirxa Kamran. Use this context:\n{context}"}]
|
| 36 |
+
|
| 37 |
+
for user, assistant in history:
|
| 38 |
+
messages.append({"role": "user", "content": user})
|
| 39 |
+
messages.append({"role": "assistant", "content": assistant})
|
| 40 |
+
|
| 41 |
+
messages.append({"role": "user", "content": message})
|
| 42 |
+
|
| 43 |
+
payload = {"model": MODEL, "messages": messages}
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
response = requests.post("https://openrouter.ai/api/v1/chat/completions", headers=headers, json=payload)
|
| 47 |
+
response.raise_for_status()
|
| 48 |
+
reply = response.json()["choices"][0]["message"]["content"]
|
| 49 |
+
except Exception as e:
|
| 50 |
+
reply = f"❌ Error: {e}"
|
| 51 |
+
|
| 52 |
+
return reply
|
| 53 |
+
|
| 54 |
+
# ✅ Gradio UI
|
| 55 |
+
demo = gr.ChatInterface(
|
| 56 |
+
fn=chat_fn,
|
| 57 |
+
title="💻 CODEX Assistant by Mirxa Kamran",
|
| 58 |
+
description="Chat with a context-aware AI code assistant.",
|
| 59 |
+
theme="soft"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# ✅ FastAPI app
|
| 63 |
+
app = FastAPI()
|
| 64 |
+
|
| 65 |
+
# ✅ Mount Gradio on root path
|
| 66 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 67 |
+
|
| 68 |
+
# ✅ FastAPI POST API endpoint
|
| 69 |
+
class ChatRequest(BaseModel):
|
| 70 |
+
message: str
|
| 71 |
+
history: list = []
|
| 72 |
+
|
| 73 |
+
@app.post("/chat")
|
| 74 |
+
def api_chat(req: ChatRequest):
|
| 75 |
+
reply = chat_fn(req.message, req.history)
|
| 76 |
+
return {"response": reply}
|
| 77 |
+
|
| 78 |
+
# ✅ Run manually in local dev or on Spaces
|
| 79 |
+
if __name__ == "__main__":
|
| 80 |
+
import uvicorn
|
| 81 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|