Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,97 +1,80 @@
|
|
| 1 |
-
|
| 2 |
import os
|
| 3 |
-
|
| 4 |
-
os.environ["TRANSFORMERS_NO_TF"] = "1"
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image, ImageFilter
|
| 8 |
import gradio as gr
|
| 9 |
-
|
| 10 |
-
# Torch is imported lazily so the Space can boot even if torch takes time to install
|
| 11 |
import torch
|
| 12 |
from transformers import pipeline
|
| 13 |
|
| 14 |
-
#
|
| 15 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
TARGET_SIZE = (512, 512)
|
| 21 |
-
|
| 22 |
-
# Pipelines: loaded once on process start
|
| 23 |
-
seg_pipe = pipeline("image-segmentation", model=SEG_MODEL_NAME, device=DEVICE, framework="pt")
|
| 24 |
-
depth_pipe = pipeline("depth-estimation", model=DEPTH_MODEL_NAME, device=DEVICE, framework="pt")
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
img = img.convert("RGB")
|
| 29 |
w, h = img.size
|
| 30 |
tw, th = size
|
| 31 |
-
|
| 32 |
-
nw, nh = int(round(w *
|
| 33 |
img = img.resize((nw, nh), Image.BICUBIC)
|
| 34 |
left, top = (nw - tw) // 2, (nh - th) // 2
|
| 35 |
return img.crop((left, top, left + tw, top + th))
|
| 36 |
|
| 37 |
def person_mask(img_512: Image.Image) -> Image.Image:
|
| 38 |
-
"""Return a binary mask (L mode) with person=255, background=0; black if no person."""
|
| 39 |
results = seg_pipe(img_512)
|
| 40 |
-
person = None
|
| 41 |
-
for r in results:
|
| 42 |
-
if r.get("label", "").lower() == "person":
|
| 43 |
-
person = r; break
|
| 44 |
if person is None:
|
| 45 |
-
for r in results
|
| 46 |
-
if "person" in r.get("label", "").lower():
|
| 47 |
-
person = r; break
|
| 48 |
if person is None:
|
| 49 |
-
return Image.new("L", img_512.size, 0)
|
| 50 |
m = person["mask"].convert("L")
|
| 51 |
m = (np.array(m) > 127).astype(np.uint8) * 255
|
| 52 |
return Image.fromarray(m, mode="L")
|
| 53 |
|
| 54 |
def gaussian_bg_blur(img_512: Image.Image, sigma: int = 15) -> Image.Image:
|
| 55 |
-
"""Blur only the background (person stays sharp)."""
|
| 56 |
m = person_mask(img_512)
|
| 57 |
blurred = img_512.filter(ImageFilter.GaussianBlur(radius=int(sigma)))
|
| 58 |
-
return Image.composite(img_512, blurred, m)
|
| 59 |
|
| 60 |
def depth_lens_blur(img_512: Image.Image, max_radius: int = 15, keep_subject: bool = True) -> Image.Image:
|
| 61 |
-
"""Apply per-pixel blur proportional to depth (farther = more blur)."""
|
| 62 |
out = depth_pipe(img_512)
|
| 63 |
-
d = out["depth"].resize(
|
| 64 |
dnp = np.array(d).astype(np.float32)
|
| 65 |
-
d01 = (dnp - dnp.min()) / (dnp.max() - dnp.min() + 1e-8)
|
| 66 |
-
far = 1.0 - d01
|
| 67 |
if keep_subject:
|
| 68 |
m = person_mask(img_512)
|
| 69 |
m01 = (np.array(m) > 127).astype(np.float32)
|
| 70 |
-
far = far * (1.0 - 0.85 * m01)
|
| 71 |
-
# Build blurred pyramid and gather
|
| 72 |
max_radius = int(max(0, min(30, max_radius)))
|
| 73 |
-
radii = np.arange(max_radius + 1, dtype=np.int32)
|
| 74 |
idx = np.clip(np.rint(far * max_radius).astype(np.int32), 0, max_radius)
|
| 75 |
-
stack = [
|
| 76 |
-
|
| 77 |
-
stack.append(img_512 if r == 0 else img_512.filter(ImageFilter.GaussianBlur(radius=int(r))))
|
| 78 |
stack_np = np.stack([np.array(im) for im in stack], axis=0) # [R+1,H,W,3]
|
| 79 |
H, W = idx.shape
|
| 80 |
-
h = np.arange(H)[:, None]
|
| 81 |
-
w = np.arange(W)[None, :]
|
| 82 |
out_np = stack_np[idx, h, w]
|
| 83 |
return Image.fromarray(out_np.astype(np.uint8))
|
| 84 |
|
| 85 |
-
def run(image
|
| 86 |
if image is None:
|
| 87 |
return None, None
|
| 88 |
-
img_512 = resize_center_crop(image,
|
| 89 |
if effect == "Gaussian Background Blur (subject sharp)":
|
| 90 |
out = gaussian_bg_blur(img_512, sigma=int(sigma))
|
| 91 |
else:
|
| 92 |
-
out = depth_lens_blur(img_512, max_radius=int(max_radius), keep_subject=keep_subject)
|
| 93 |
return img_512, out
|
| 94 |
|
|
|
|
| 95 |
with gr.Blocks(title="Gaussian & Lens Blur Lab") as demo:
|
| 96 |
gr.Markdown("# Gaussian & Lens Blur Lab\nUpload an image and compare effects.")
|
| 97 |
with gr.Row():
|
|
@@ -99,8 +82,7 @@ with gr.Blocks(title="Gaussian & Lens Blur Lab") as demo:
|
|
| 99 |
in_img = gr.Image(type="pil", label="Upload image")
|
| 100 |
effect = gr.Radio(
|
| 101 |
["Gaussian Background Blur (subject sharp)", "Depth-based Lens Blur"],
|
| 102 |
-
value="Gaussian Background Blur (subject sharp)",
|
| 103 |
-
label="Effect"
|
| 104 |
)
|
| 105 |
sigma = gr.Slider(1, 40, value=15, step=1, label="Gaussian sigma")
|
| 106 |
max_r = gr.Slider(4, 30, value=15, step=1, label="Max blur radius (lens blur)")
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
os.environ["TRANSFORMERS_NO_TF"] = "1" # force PyTorch-only pipelines
|
|
|
|
| 3 |
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image, ImageFilter
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
| 7 |
import torch
|
| 8 |
from transformers import pipeline
|
| 9 |
|
| 10 |
+
# ---- Config ----
|
| 11 |
DEVICE = 0 if torch.cuda.is_available() else -1
|
| 12 |
+
SEG_MODEL = "nvidia/segformer-b0-finetuned-ade-512-512"
|
| 13 |
+
DEPTH_MODEL = "Intel/dpt-hybrid-midas"
|
| 14 |
+
SIZE = (512, 512)
|
| 15 |
|
| 16 |
+
# ---- Pipelines (loaded once) ----
|
| 17 |
+
seg_pipe = pipeline("image-segmentation", model=SEG_MODEL, device=DEVICE, framework="pt")
|
| 18 |
+
depth_pipe = pipeline("depth-estimation", model=DEPTH_MODEL, device=DEVICE, framework="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# ---- Helpers ----
|
| 21 |
+
def resize_center_crop(img: Image.Image, size=SIZE) -> Image.Image:
|
| 22 |
img = img.convert("RGB")
|
| 23 |
w, h = img.size
|
| 24 |
tw, th = size
|
| 25 |
+
s = max(tw / w, th / h)
|
| 26 |
+
nw, nh = int(round(w * s)), int(round(h * s))
|
| 27 |
img = img.resize((nw, nh), Image.BICUBIC)
|
| 28 |
left, top = (nw - tw) // 2, (nh - th) // 2
|
| 29 |
return img.crop((left, top, left + tw, top + th))
|
| 30 |
|
| 31 |
def person_mask(img_512: Image.Image) -> Image.Image:
|
|
|
|
| 32 |
results = seg_pipe(img_512)
|
| 33 |
+
person = next((r for r in results if r.get("label", "").lower() == "person"), None)
|
|
|
|
|
|
|
|
|
|
| 34 |
if person is None:
|
| 35 |
+
person = next((r for r in results if "person" in r.get("label", "").lower()), None)
|
|
|
|
|
|
|
| 36 |
if person is None:
|
| 37 |
+
return Image.new("L", img_512.size, 0) # no person detected
|
| 38 |
m = person["mask"].convert("L")
|
| 39 |
m = (np.array(m) > 127).astype(np.uint8) * 255
|
| 40 |
return Image.fromarray(m, mode="L")
|
| 41 |
|
| 42 |
def gaussian_bg_blur(img_512: Image.Image, sigma: int = 15) -> Image.Image:
|
|
|
|
| 43 |
m = person_mask(img_512)
|
| 44 |
blurred = img_512.filter(ImageFilter.GaussianBlur(radius=int(sigma)))
|
| 45 |
+
return Image.composite(img_512, blurred, m) # white=person -> keep sharp
|
| 46 |
|
| 47 |
def depth_lens_blur(img_512: Image.Image, max_radius: int = 15, keep_subject: bool = True) -> Image.Image:
|
|
|
|
| 48 |
out = depth_pipe(img_512)
|
| 49 |
+
d = out["depth"].resize(SIZE, Image.BICUBIC)
|
| 50 |
dnp = np.array(d).astype(np.float32)
|
| 51 |
+
d01 = (dnp - dnp.min()) / (dnp.max() - dnp.min() + 1e-8) # 0..1
|
| 52 |
+
far = 1.0 - d01 # larger=farther -> more blur
|
| 53 |
if keep_subject:
|
| 54 |
m = person_mask(img_512)
|
| 55 |
m01 = (np.array(m) > 127).astype(np.float32)
|
| 56 |
+
far = far * (1.0 - 0.85 * m01) # suppress blur on detected subject
|
|
|
|
| 57 |
max_radius = int(max(0, min(30, max_radius)))
|
|
|
|
| 58 |
idx = np.clip(np.rint(far * max_radius).astype(np.int32), 0, max_radius)
|
| 59 |
+
stack = [img_512 if r == 0 else img_512.filter(ImageFilter.GaussianBlur(radius=r))
|
| 60 |
+
for r in range(max_radius + 1)]
|
|
|
|
| 61 |
stack_np = np.stack([np.array(im) for im in stack], axis=0) # [R+1,H,W,3]
|
| 62 |
H, W = idx.shape
|
| 63 |
+
h = np.arange(H)[:, None]; w = np.arange(W)[None, :]
|
|
|
|
| 64 |
out_np = stack_np[idx, h, w]
|
| 65 |
return Image.fromarray(out_np.astype(np.uint8))
|
| 66 |
|
| 67 |
+
def run(image, effect, sigma, max_radius, keep_subject):
|
| 68 |
if image is None:
|
| 69 |
return None, None
|
| 70 |
+
img_512 = resize_center_crop(image, SIZE)
|
| 71 |
if effect == "Gaussian Background Blur (subject sharp)":
|
| 72 |
out = gaussian_bg_blur(img_512, sigma=int(sigma))
|
| 73 |
else:
|
| 74 |
+
out = depth_lens_blur(img_512, max_radius=int(max_radius), keep_subject=bool(keep_subject))
|
| 75 |
return img_512, out
|
| 76 |
|
| 77 |
+
# ---- UI ----
|
| 78 |
with gr.Blocks(title="Gaussian & Lens Blur Lab") as demo:
|
| 79 |
gr.Markdown("# Gaussian & Lens Blur Lab\nUpload an image and compare effects.")
|
| 80 |
with gr.Row():
|
|
|
|
| 82 |
in_img = gr.Image(type="pil", label="Upload image")
|
| 83 |
effect = gr.Radio(
|
| 84 |
["Gaussian Background Blur (subject sharp)", "Depth-based Lens Blur"],
|
| 85 |
+
value="Gaussian Background Blur (subject sharp)", label="Effect"
|
|
|
|
| 86 |
)
|
| 87 |
sigma = gr.Slider(1, 40, value=15, step=1, label="Gaussian sigma")
|
| 88 |
max_r = gr.Slider(4, 30, value=15, step=1, label="Max blur radius (lens blur)")
|