Spaces:
Sleeping
Sleeping
bugfix: bugfixes for LLM streaming
Browse files- app.py +205 -92
- utils/chatLogger.py +59 -34
app.py
CHANGED
|
@@ -3,13 +3,13 @@ import json
|
|
| 3 |
import base64
|
| 4 |
import uuid
|
| 5 |
import logging
|
|
|
|
| 6 |
|
| 7 |
-
from typing import Generator
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
from openai import OpenAI
|
| 10 |
import gradio as gr
|
| 11 |
-
|
| 12 |
from dotenv import load_dotenv
|
|
|
|
| 13 |
from utils.utils import (
|
| 14 |
get_keys_chunks,
|
| 15 |
get_docs,
|
|
@@ -17,53 +17,92 @@ from utils.utils import (
|
|
| 17 |
get_messages,
|
| 18 |
load_knowledge_base,
|
| 19 |
)
|
| 20 |
-
|
| 21 |
from utils.chatLogger import ChatUploader
|
| 22 |
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
logger.info("Initializing application...")
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
embedding_model_path = "ibm-granite/granite-embedding-125m-english"
|
| 34 |
embedding_model = SentenceTransformer(embedding_model_path)
|
|
|
|
| 35 |
|
| 36 |
-
logger.info("Loading and encoding document chunks...")
|
| 37 |
knowledge_base = load_knowledge_base()
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
base_url="https://api.inference.net/v1",
|
| 49 |
-
api_key=
|
| 50 |
)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return (
|
| 63 |
embedding_model,
|
| 64 |
-
|
| 65 |
knowledge_base,
|
| 66 |
-
|
| 67 |
logger,
|
| 68 |
chat_uploader,
|
| 69 |
)
|
|
@@ -79,102 +118,175 @@ def initialize():
|
|
| 79 |
) = initialize()
|
| 80 |
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
def rag_chatbot(
|
| 83 |
user_message: str,
|
| 84 |
-
chat_history:
|
| 85 |
browser_id: str,
|
| 86 |
-
) -> Generator[
|
| 87 |
"""
|
| 88 |
-
|
|
|
|
| 89 |
"""
|
|
|
|
| 90 |
try:
|
| 91 |
-
logger.info("
|
| 92 |
-
user_query_encoded = embedding_model.encode(
|
|
|
|
|
|
|
| 93 |
top_chunk_keys = get_top_chunk_keys(
|
| 94 |
user_query_encoded, keys_chunksEncoded, top_n=5
|
| 95 |
)
|
| 96 |
docs = get_docs(top_chunk_keys, knowledge_base)
|
|
|
|
| 97 |
except Exception as e:
|
| 98 |
-
logger.
|
| 99 |
yield [
|
| 100 |
{
|
| 101 |
"role": "assistant",
|
| 102 |
-
"content":
|
| 103 |
}
|
| 104 |
]
|
| 105 |
return
|
| 106 |
|
|
|
|
| 107 |
try:
|
| 108 |
-
logger.info(
|
|
|
|
|
|
|
| 109 |
messages = get_messages(docs, user_message, chat_history)
|
| 110 |
-
|
| 111 |
model="mistralai/mistral-nemo-12b-instruct/fp-8",
|
| 112 |
messages=messages,
|
| 113 |
stream=True,
|
| 114 |
)
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
-
logger.
|
| 117 |
yield [
|
| 118 |
{
|
| 119 |
"role": "assistant",
|
| 120 |
-
"content":
|
| 121 |
}
|
| 122 |
]
|
| 123 |
return
|
| 124 |
|
|
|
|
|
|
|
| 125 |
try:
|
| 126 |
-
logger.info("
|
| 127 |
-
llm_thinking = False
|
| 128 |
-
buffer = ""
|
| 129 |
-
chat_history.append({"role": "user", "content": user_message})
|
| 130 |
-
chat_history.append({"role": "assistant", "content": ""})
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
continue
|
| 136 |
-
|
| 137 |
-
if
|
| 138 |
-
|
| 139 |
-
|
|
|
|
| 140 |
continue
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
yield [{"role": "assistant", "content": "Finished thinking."}]
|
| 145 |
continue
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
| 154 |
|
| 155 |
if buffer:
|
| 156 |
-
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
except Exception as e:
|
| 159 |
-
logger.
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
"
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
|
|
|
| 167 |
try:
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
except Exception as e:
|
| 171 |
-
logger.warning(
|
| 172 |
|
| 173 |
-
logger.info("Returning chat history...")
|
| 174 |
-
return chat_history
|
| 175 |
|
| 176 |
-
|
| 177 |
-
# Gradio app code
|
| 178 |
with gr.Blocks() as demo:
|
| 179 |
browser_id_state = gr.BrowserState(default_value=None)
|
| 180 |
|
|
@@ -182,7 +294,9 @@ with gr.Blocks() as demo:
|
|
| 182 |
def load_browser_id(current_id):
|
| 183 |
if current_id is None or current_id == "":
|
| 184 |
new_id = str(uuid.uuid4())
|
|
|
|
| 185 |
return new_id
|
|
|
|
| 186 |
return current_id
|
| 187 |
|
| 188 |
gr.ChatInterface(
|
|
@@ -191,20 +305,19 @@ with gr.Blocks() as demo:
|
|
| 191 |
additional_inputs=browser_id_state,
|
| 192 |
type="messages",
|
| 193 |
examples=[
|
| 194 |
-
["What is Matthew's educational background?"],
|
| 195 |
-
["What machine learning projects has Matthew worked on?"],
|
| 196 |
-
["What experience does Matthew have in software engineering?"],
|
| 197 |
-
["Why did Matthew choose to pursue a degree in computer science?"],
|
| 198 |
-
["Does Matthew have any leadership experience?"],
|
| 199 |
-
["Has Matthew completed any Summer internships?"],
|
| 200 |
-
["Tell me about some real-world projects Matthew has worked on
|
| 201 |
-
["What is Matthew's greatest strength and weakness?"],
|
| 202 |
],
|
| 203 |
save_history=True,
|
| 204 |
run_examples_on_click=False,
|
| 205 |
cache_examples=False,
|
| 206 |
)
|
| 207 |
|
| 208 |
-
|
| 209 |
if __name__ == "__main__":
|
| 210 |
demo.launch()
|
|
|
|
| 3 |
import base64
|
| 4 |
import uuid
|
| 5 |
import logging
|
| 6 |
+
from typing import Generator, List, Dict, Tuple, Optional
|
| 7 |
|
|
|
|
| 8 |
from sentence_transformers import SentenceTransformer
|
| 9 |
from openai import OpenAI
|
| 10 |
import gradio as gr
|
|
|
|
| 11 |
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
from utils.utils import (
|
| 14 |
get_keys_chunks,
|
| 15 |
get_docs,
|
|
|
|
| 17 |
get_messages,
|
| 18 |
load_knowledge_base,
|
| 19 |
)
|
|
|
|
| 20 |
from utils.chatLogger import ChatUploader
|
| 21 |
|
| 22 |
|
| 23 |
+
# --------------- Logging ---------------
|
| 24 |
+
def _setup_logging() -> logging.Logger:
|
| 25 |
+
logging.basicConfig(
|
| 26 |
+
level=logging.INFO,
|
| 27 |
+
format="%(levelname)s:%(name)s:%(message)s",
|
| 28 |
+
)
|
| 29 |
+
return logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# --------------- Initialization ---------------
|
| 33 |
+
def _require_env(var: str) -> str:
|
| 34 |
+
val = os.getenv(var)
|
| 35 |
+
if not val:
|
| 36 |
+
raise RuntimeError(f"Missing required environment variable: {var}")
|
| 37 |
+
return val
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def initialize() -> Tuple[
|
| 41 |
+
SentenceTransformer,
|
| 42 |
+
List[Tuple[str, "numpy.ndarray"]],
|
| 43 |
+
Dict,
|
| 44 |
+
OpenAI,
|
| 45 |
+
logging.Logger,
|
| 46 |
+
Optional[ChatUploader],
|
| 47 |
+
]:
|
| 48 |
+
logger = _setup_logging()
|
| 49 |
logger.info("Initializing application...")
|
| 50 |
+
|
| 51 |
+
load_dotenv(override=False)
|
| 52 |
+
logger.info(".env loaded (override=False)")
|
| 53 |
+
|
| 54 |
embedding_model_path = "ibm-granite/granite-embedding-125m-english"
|
| 55 |
embedding_model = SentenceTransformer(embedding_model_path)
|
| 56 |
+
logger.info("Embedding model loaded: %s", embedding_model_path)
|
| 57 |
|
|
|
|
| 58 |
knowledge_base = load_knowledge_base()
|
| 59 |
+
logger.info("Knowledge base loaded")
|
| 60 |
+
|
| 61 |
+
pairs = list(get_keys_chunks(knowledge_base))
|
| 62 |
+
if not pairs:
|
| 63 |
+
raise RuntimeError("Knowledge base is empty – no chunks to encode.")
|
| 64 |
+
keys, chunks = zip(*pairs)
|
| 65 |
+
logger.info("KB chunks extracted: %d", len(chunks))
|
| 66 |
+
|
| 67 |
+
chunks_encoded = embedding_model.encode(
|
| 68 |
+
list(chunks),
|
| 69 |
+
batch_size=64,
|
| 70 |
+
convert_to_numpy=True,
|
| 71 |
+
show_progress_bar=False,
|
| 72 |
+
)
|
| 73 |
+
keys_chunks_encoded = list(zip(keys, chunks_encoded))
|
| 74 |
+
logger.info("KB chunks encoded: %d", len(keys_chunks_encoded))
|
| 75 |
|
| 76 |
+
inference_api_key = _require_env("INFERENCE_API_KEY")
|
| 77 |
+
openai_client = OpenAI(
|
| 78 |
base_url="https://api.inference.net/v1",
|
| 79 |
+
api_key=inference_api_key,
|
| 80 |
)
|
| 81 |
+
logger.info("OpenAI client initialized (base_url=api.inference.net)")
|
| 82 |
+
|
| 83 |
+
chat_uploader: Optional[ChatUploader] = None
|
| 84 |
+
drive_creds_b64 = os.getenv("GOOGLE_DRIVE_SERVICE_ACCOUNT_CREDENTIALS_BASE64")
|
| 85 |
+
if drive_creds_b64:
|
| 86 |
+
try:
|
| 87 |
+
service_account_json = json.loads(
|
| 88 |
+
base64.b64decode(drive_creds_b64).decode()
|
| 89 |
+
)
|
| 90 |
+
chat_uploader = ChatUploader(service_account_json)
|
| 91 |
+
logger.info("Google Drive uploader configured")
|
| 92 |
+
except Exception as e:
|
| 93 |
+
logger.warning(
|
| 94 |
+
"Google Drive uploader not configured (error parsing creds): %s", e
|
| 95 |
+
)
|
| 96 |
+
chat_uploader = None
|
| 97 |
+
else:
|
| 98 |
+
logger.info("Google Drive uploader not configured (no creds env var)")
|
| 99 |
+
|
| 100 |
+
logger.info("Initialization complete")
|
| 101 |
return (
|
| 102 |
embedding_model,
|
| 103 |
+
keys_chunks_encoded,
|
| 104 |
knowledge_base,
|
| 105 |
+
openai_client,
|
| 106 |
logger,
|
| 107 |
chat_uploader,
|
| 108 |
)
|
|
|
|
| 118 |
) = initialize()
|
| 119 |
|
| 120 |
|
| 121 |
+
# --------------- Helpers ---------------
|
| 122 |
+
def _strip_think_tags(text: str) -> str:
|
| 123 |
+
return text.replace("<think>", "").replace("</think>", "")
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def _to_minimal(history: List[Dict[str, str]]) -> List[Dict[str, str]]:
|
| 127 |
+
"""Keep only role/content keys to avoid metadata/options noise in uploads."""
|
| 128 |
+
minimal: List[Dict[str, str]] = []
|
| 129 |
+
for m in history:
|
| 130 |
+
role = m.get("role")
|
| 131 |
+
content = m.get("content", "")
|
| 132 |
+
if role is None:
|
| 133 |
+
# ignore malformed entries
|
| 134 |
+
continue
|
| 135 |
+
minimal.append({"role": role, "content": content})
|
| 136 |
+
return minimal
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# --------------- RAG Chatbot ---------------
|
| 140 |
def rag_chatbot(
|
| 141 |
user_message: str,
|
| 142 |
+
chat_history: List[Dict[str, str]],
|
| 143 |
browser_id: str,
|
| 144 |
+
) -> Generator[List[Dict[str, str]], None, None]:
|
| 145 |
"""
|
| 146 |
+
Stream assistant output as a single growing message dict.
|
| 147 |
+
Do NOT mutate chat_history; Gradio manages it for type="messages".
|
| 148 |
"""
|
| 149 |
+
# RAG retrieval
|
| 150 |
try:
|
| 151 |
+
logger.info("RAG: encoding query & retrieving docs")
|
| 152 |
+
user_query_encoded = embedding_model.encode(
|
| 153 |
+
[user_message], convert_to_numpy=True
|
| 154 |
+
)[0]
|
| 155 |
top_chunk_keys = get_top_chunk_keys(
|
| 156 |
user_query_encoded, keys_chunksEncoded, top_n=5
|
| 157 |
)
|
| 158 |
docs = get_docs(top_chunk_keys, knowledge_base)
|
| 159 |
+
logger.info("RAG: docs retrieved=%d (top_n=5)", len(docs))
|
| 160 |
except Exception as e:
|
| 161 |
+
logger.error("RAG: retrieval failed: %s", e)
|
| 162 |
yield [
|
| 163 |
{
|
| 164 |
"role": "assistant",
|
| 165 |
+
"content": "⚠️ An error occurred during document retrieval. Please try again later.",
|
| 166 |
}
|
| 167 |
]
|
| 168 |
return
|
| 169 |
|
| 170 |
+
# LLM stream
|
| 171 |
try:
|
| 172 |
+
logger.info(
|
| 173 |
+
"LLM: opening streaming completion (model=mistralai/mistral-nemo-12b-instruct/fp-8)"
|
| 174 |
+
)
|
| 175 |
messages = get_messages(docs, user_message, chat_history)
|
| 176 |
+
chat_stream = openAI_client.chat.completions.create(
|
| 177 |
model="mistralai/mistral-nemo-12b-instruct/fp-8",
|
| 178 |
messages=messages,
|
| 179 |
stream=True,
|
| 180 |
)
|
| 181 |
+
logger.info("LLM: stream opened")
|
| 182 |
except Exception as e:
|
| 183 |
+
logger.error("LLM: API call failed: %s", e)
|
| 184 |
yield [
|
| 185 |
{
|
| 186 |
"role": "assistant",
|
| 187 |
+
"content": "⚠️ An error occurred during client API call. Please try again later.",
|
| 188 |
}
|
| 189 |
]
|
| 190 |
return
|
| 191 |
|
| 192 |
+
# Stream parse → yield a single growing assistant message
|
| 193 |
+
assistant_msg = {"role": "assistant", "content": ""}
|
| 194 |
try:
|
| 195 |
+
logger.info("LLM: streaming started")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
buffer = ""
|
| 198 |
+
chunks_seen = 0
|
| 199 |
+
content_events = 0
|
| 200 |
+
chars_emitted = 0
|
| 201 |
+
|
| 202 |
+
for chunk in chat_stream:
|
| 203 |
+
chunks_seen += 1
|
| 204 |
+
choices = getattr(chunk, "choices", None)
|
| 205 |
+
if not choices:
|
| 206 |
continue
|
| 207 |
+
delta = getattr(choices[0], "delta", None)
|
| 208 |
+
if not delta:
|
| 209 |
+
continue
|
| 210 |
+
piece = getattr(delta, "content", None)
|
| 211 |
+
if piece is None:
|
| 212 |
continue
|
| 213 |
|
| 214 |
+
piece = _strip_think_tags(piece)
|
| 215 |
+
if not piece:
|
|
|
|
| 216 |
continue
|
| 217 |
|
| 218 |
+
content_events += 1
|
| 219 |
+
buffer += piece
|
| 220 |
|
| 221 |
+
if len(buffer) >= 24 or "\n" in buffer:
|
| 222 |
+
assistant_msg["content"] += buffer
|
| 223 |
+
chars_emitted += len(buffer)
|
| 224 |
+
yield [assistant_msg] # append/update single assistant bubble
|
| 225 |
+
buffer = ""
|
| 226 |
|
| 227 |
if buffer:
|
| 228 |
+
assistant_msg["content"] += buffer
|
| 229 |
+
chars_emitted += len(buffer)
|
| 230 |
+
yield [assistant_msg]
|
| 231 |
+
|
| 232 |
+
logger.info(
|
| 233 |
+
"LLM: streaming finished (chunks=%d, content_events=%d, chars=%d)",
|
| 234 |
+
chunks_seen,
|
| 235 |
+
content_events,
|
| 236 |
+
chars_emitted,
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
except Exception as e:
|
| 240 |
+
logger.error("LLM: streaming failed: %s", e)
|
| 241 |
+
if assistant_msg["content"]:
|
| 242 |
+
assistant_msg[
|
| 243 |
+
"content"
|
| 244 |
+
] += "\n\n⚠️ An error occurred during LLM response streaming. Please try again later."
|
| 245 |
+
yield [assistant_msg]
|
| 246 |
+
else:
|
| 247 |
+
yield [
|
| 248 |
+
{
|
| 249 |
+
"role": "assistant",
|
| 250 |
+
"content": "⚠️ An error occurred during LLM response streaming. Please try again later.",
|
| 251 |
+
}
|
| 252 |
+
]
|
| 253 |
+
return
|
| 254 |
|
| 255 |
+
# --- Upload transcript (optional) — reconstruct current turn explicitly
|
| 256 |
try:
|
| 257 |
+
if chat_uploader is not None:
|
| 258 |
+
# Gradio passes prior turns in `chat_history`. Build latest full transcript.
|
| 259 |
+
prior = _to_minimal(chat_history)
|
| 260 |
+
current_user = {"role": "user", "content": user_message}
|
| 261 |
+
final_history = prior + [
|
| 262 |
+
current_user,
|
| 263 |
+
{"role": "assistant", "content": assistant_msg["content"]},
|
| 264 |
+
]
|
| 265 |
+
|
| 266 |
+
# Ensure we have a usable browser_id for the filename
|
| 267 |
+
if not browser_id:
|
| 268 |
+
browser_id = str(uuid.uuid4())
|
| 269 |
+
drive_filename = f"chat__{browser_id}.json"
|
| 270 |
+
|
| 271 |
+
logger.info(
|
| 272 |
+
"Upload: writing Drive file '%s' (messages=%d, mode=overwrite)",
|
| 273 |
+
drive_filename,
|
| 274 |
+
len(final_history),
|
| 275 |
+
)
|
| 276 |
+
chat_uploader.upload_chat_history(
|
| 277 |
+
final_history,
|
| 278 |
+
browser_id,
|
| 279 |
+
filename=drive_filename,
|
| 280 |
+
mode="overwrite", # <-- overwrite-by-name semantics
|
| 281 |
+
)
|
| 282 |
+
logger.info("Upload: completed")
|
| 283 |
+
else:
|
| 284 |
+
logger.info("Upload: skipped (uploader not configured)")
|
| 285 |
except Exception as e:
|
| 286 |
+
logger.warning("Upload: failed (non-fatal): %s", e)
|
| 287 |
|
|
|
|
|
|
|
| 288 |
|
| 289 |
+
# --------------- Gradio app ---------------
|
|
|
|
| 290 |
with gr.Blocks() as demo:
|
| 291 |
browser_id_state = gr.BrowserState(default_value=None)
|
| 292 |
|
|
|
|
| 294 |
def load_browser_id(current_id):
|
| 295 |
if current_id is None or current_id == "":
|
| 296 |
new_id = str(uuid.uuid4())
|
| 297 |
+
logger.info("Browser ID created: %s", new_id)
|
| 298 |
return new_id
|
| 299 |
+
logger.info("Browser ID reused: %s", current_id)
|
| 300 |
return current_id
|
| 301 |
|
| 302 |
gr.ChatInterface(
|
|
|
|
| 305 |
additional_inputs=browser_id_state,
|
| 306 |
type="messages",
|
| 307 |
examples=[
|
| 308 |
+
["What is Matthew's educational background?", None],
|
| 309 |
+
["What machine learning projects has Matthew worked on?", None],
|
| 310 |
+
["What experience does Matthew have in software engineering?", None],
|
| 311 |
+
["Why did Matthew choose to pursue a degree in computer science?", None],
|
| 312 |
+
["Does Matthew have any leadership experience?", None],
|
| 313 |
+
["Has Matthew completed any Summer internships?", None],
|
| 314 |
+
["Tell me about some real-world projects Matthew has worked on?", None],
|
| 315 |
+
["What is Matthew's greatest strength and weakness?", None],
|
| 316 |
],
|
| 317 |
save_history=True,
|
| 318 |
run_examples_on_click=False,
|
| 319 |
cache_examples=False,
|
| 320 |
)
|
| 321 |
|
|
|
|
| 322 |
if __name__ == "__main__":
|
| 323 |
demo.launch()
|
utils/chatLogger.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
import io
|
| 2 |
import json
|
|
|
|
|
|
|
| 3 |
from googleapiclient.discovery import build
|
| 4 |
from googleapiclient.http import MediaIoBaseUpload, MediaIoBaseDownload
|
| 5 |
from google.oauth2 import service_account
|
|
@@ -13,16 +15,21 @@ class ChatUploader:
|
|
| 13 |
):
|
| 14 |
"""
|
| 15 |
Initializes a new chat uploader instance using a service account JSON dict.
|
|
|
|
| 16 |
"""
|
| 17 |
credentials = service_account.Credentials.from_service_account_info(
|
| 18 |
-
service_account_json,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
)
|
| 20 |
-
self.drive_service = build("drive", "v3", credentials=credentials)
|
| 21 |
self.root_folder_id = root_folder_id
|
| 22 |
|
| 23 |
def _get_or_create_browser_folder(self, browser_id: str) -> str:
|
| 24 |
"""
|
| 25 |
-
|
| 26 |
"""
|
| 27 |
folder_name = f"browser_{browser_id}"
|
| 28 |
query = (
|
|
@@ -34,35 +41,51 @@ class ChatUploader:
|
|
| 34 |
|
| 35 |
if folders:
|
| 36 |
return folders[0]["id"]
|
| 37 |
-
else:
|
| 38 |
-
metadata = {
|
| 39 |
-
"name": folder_name,
|
| 40 |
-
"mimeType": "application/vnd.google-apps.folder",
|
| 41 |
-
"parents": [self.root_folder_id],
|
| 42 |
-
}
|
| 43 |
-
folder = (
|
| 44 |
-
self.drive_service.files().create(body=metadata, fields="id").execute()
|
| 45 |
-
)
|
| 46 |
-
return folder["id"]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
"""
|
| 52 |
-
|
| 53 |
"""
|
| 54 |
-
folder_id = self._get_or_create_browser_folder(browser_id)
|
| 55 |
-
|
| 56 |
query = (
|
| 57 |
-
f"name = '{
|
| 58 |
"mimeType = 'application/json' and trashed = false"
|
| 59 |
)
|
| 60 |
results = self.drive_service.files().list(q=query, fields="files(id)").execute()
|
| 61 |
files = results.get("files", [])
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
|
|
|
|
|
|
| 66 |
request = self.drive_service.files().get_media(fileId=file_id)
|
| 67 |
existing_stream = io.BytesIO()
|
| 68 |
downloader = MediaIoBaseDownload(existing_stream, request)
|
|
@@ -72,23 +95,25 @@ class ChatUploader:
|
|
| 72 |
|
| 73 |
existing_stream.seek(0)
|
| 74 |
try:
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
except json.JSONDecodeError:
|
| 77 |
-
|
|
|
|
| 78 |
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
io.BytesIO(content.encode()), mimetype="application/json"
|
| 84 |
-
)
|
| 85 |
self.drive_service.files().update(
|
| 86 |
fileId=file_id, media_body=media
|
| 87 |
).execute()
|
| 88 |
else:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
self.drive_service.files().create(body=metadata, media_body=media).execute()
|
|
|
|
| 1 |
import io
|
| 2 |
import json
|
| 3 |
+
from typing import List, Dict, Literal, Optional
|
| 4 |
+
|
| 5 |
from googleapiclient.discovery import build
|
| 6 |
from googleapiclient.http import MediaIoBaseUpload, MediaIoBaseDownload
|
| 7 |
from google.oauth2 import service_account
|
|
|
|
| 15 |
):
|
| 16 |
"""
|
| 17 |
Initializes a new chat uploader instance using a service account JSON dict.
|
| 18 |
+
By default writes into a fixed root folder.
|
| 19 |
"""
|
| 20 |
credentials = service_account.Credentials.from_service_account_info(
|
| 21 |
+
service_account_json,
|
| 22 |
+
scopes=["https://www.googleapis.com/auth/drive"],
|
| 23 |
+
)
|
| 24 |
+
# cache_discovery=False avoids deprecation noise
|
| 25 |
+
self.drive_service = build(
|
| 26 |
+
"drive", "v3", credentials=credentials, cache_discovery=False
|
| 27 |
)
|
|
|
|
| 28 |
self.root_folder_id = root_folder_id
|
| 29 |
|
| 30 |
def _get_or_create_browser_folder(self, browser_id: str) -> str:
|
| 31 |
"""
|
| 32 |
+
Ensure a per-browser folder 'browser_{browser_id}' exists; return its file ID.
|
| 33 |
"""
|
| 34 |
folder_name = f"browser_{browser_id}"
|
| 35 |
query = (
|
|
|
|
| 41 |
|
| 42 |
if folders:
|
| 43 |
return folders[0]["id"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
metadata = {
|
| 46 |
+
"name": folder_name,
|
| 47 |
+
"mimeType": "application/vnd.google-apps.folder",
|
| 48 |
+
"parents": [self.root_folder_id],
|
| 49 |
+
}
|
| 50 |
+
folder = self.drive_service.files().create(body=metadata, fields="id").execute()
|
| 51 |
+
return folder["id"]
|
| 52 |
+
|
| 53 |
+
def _find_file(self, name: str, parent_id: str) -> Optional[str]:
|
| 54 |
"""
|
| 55 |
+
Return file ID for a JSON file with given name in parent, else None.
|
| 56 |
"""
|
|
|
|
|
|
|
| 57 |
query = (
|
| 58 |
+
f"name = '{name}' and '{parent_id}' in parents and "
|
| 59 |
"mimeType = 'application/json' and trashed = false"
|
| 60 |
)
|
| 61 |
results = self.drive_service.files().list(q=query, fields="files(id)").execute()
|
| 62 |
files = results.get("files", [])
|
| 63 |
+
return files[0]["id"] if files else None
|
| 64 |
|
| 65 |
+
def upload_chat_history(
|
| 66 |
+
self,
|
| 67 |
+
chat_history: List[Dict[str, str]],
|
| 68 |
+
browser_id: str,
|
| 69 |
+
filename: str = "chat_log.json",
|
| 70 |
+
mode: Literal["overwrite", "append"] = "overwrite",
|
| 71 |
+
) -> None:
|
| 72 |
+
"""
|
| 73 |
+
Write the chat log inside the browser's folder.
|
| 74 |
+
|
| 75 |
+
- overwrite (default): REPLACE file contents with the provided chat_history
|
| 76 |
+
(this is what you want to keep Drive in sync with the UI)
|
| 77 |
+
- append: read existing JSON array and extend it with chat_history
|
| 78 |
+
|
| 79 |
+
chat_history is expected to be the *complete* transcript you want stored
|
| 80 |
+
(for overwrite), already normalized to [{role, content}, ...].
|
| 81 |
+
"""
|
| 82 |
+
folder_id = self._get_or_create_browser_folder(browser_id)
|
| 83 |
+
file_id = self._find_file(filename, folder_id)
|
| 84 |
+
|
| 85 |
+
payload: List[Dict[str, str]] = chat_history
|
| 86 |
|
| 87 |
+
if mode == "append" and file_id:
|
| 88 |
+
# Load existing file and extend
|
| 89 |
request = self.drive_service.files().get_media(fileId=file_id)
|
| 90 |
existing_stream = io.BytesIO()
|
| 91 |
downloader = MediaIoBaseDownload(existing_stream, request)
|
|
|
|
| 95 |
|
| 96 |
existing_stream.seek(0)
|
| 97 |
try:
|
| 98 |
+
existing_chat = json.loads(existing_stream.read())
|
| 99 |
+
if isinstance(existing_chat, list):
|
| 100 |
+
payload = existing_chat + chat_history
|
| 101 |
except json.JSONDecodeError:
|
| 102 |
+
# Fall back to current chat_history only
|
| 103 |
+
payload = chat_history
|
| 104 |
|
| 105 |
+
content = json.dumps(payload, ensure_ascii=False, indent=2).encode("utf-8")
|
| 106 |
+
media = MediaIoBaseUpload(io.BytesIO(content), mimetype="application/json")
|
| 107 |
|
| 108 |
+
if file_id:
|
| 109 |
+
# REPLACE contents
|
|
|
|
|
|
|
| 110 |
self.drive_service.files().update(
|
| 111 |
fileId=file_id, media_body=media
|
| 112 |
).execute()
|
| 113 |
else:
|
| 114 |
+
metadata = {
|
| 115 |
+
"name": filename,
|
| 116 |
+
"parents": [folder_id],
|
| 117 |
+
"mimeType": "application/json",
|
| 118 |
+
}
|
| 119 |
self.drive_service.files().create(body=metadata, media_body=media).execute()
|