Anas Awadalla
commited on
Commit
·
587e0bc
1
Parent(s):
b47cdd1
v0
Browse files- README.md +70 -4
- requirements.txt +5 -3
- src/streamlit_app.py +351 -37
README.md
CHANGED
|
@@ -11,9 +11,75 @@ pinned: false
|
|
| 11 |
short_description: Streamlit template space
|
| 12 |
---
|
| 13 |
|
| 14 |
-
#
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
short_description: Streamlit template space
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Grounding Benchmark Leaderboard Viewer
|
| 15 |
|
| 16 |
+
A Streamlit application for visualizing model performance on grounding benchmarks.
|
| 17 |
|
| 18 |
+
## Features
|
| 19 |
+
|
| 20 |
+
- **Real-time Data**: Fetches results directly from the HuggingFace leaderboard repository
|
| 21 |
+
- **Interactive Visualizations**: Bar charts comparing model performance across different metrics
|
| 22 |
+
- **Baseline Comparisons**: Shows baseline models (Qwen2-VL, UI-TARS) alongside evaluated models
|
| 23 |
+
- **UI Type Breakdown**: For ScreenSpot datasets, shows performance by:
|
| 24 |
+
- Desktop vs Web
|
| 25 |
+
- Text vs Icon elements
|
| 26 |
+
- Overall averages
|
| 27 |
+
- **Model Details**: View training loss, checkpoint steps, and evaluation timestamps
|
| 28 |
+
- **Raw Data Access**: Inspect the complete evaluation results JSON
|
| 29 |
+
|
| 30 |
+
## Installation
|
| 31 |
+
|
| 32 |
+
1. Clone or download this directory
|
| 33 |
+
2. Install dependencies:
|
| 34 |
+
```bash
|
| 35 |
+
pip install -r requirements.txt
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Running the App
|
| 39 |
+
|
| 40 |
+
```bash
|
| 41 |
+
streamlit run src/streamlit_app.py
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
The app will open in your browser at `http://localhost:8501`
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
|
| 48 |
+
1. **Select Dataset**: Use the sidebar to choose which benchmark dataset to view (e.g., screenspot-v2, screenspot-pro)
|
| 49 |
+
|
| 50 |
+
2. **Filter Models**: Optionally filter to view a specific model or all models
|
| 51 |
+
|
| 52 |
+
3. **View Charts**: The main page displays:
|
| 53 |
+
- Overall metrics (number of models, best accuracy, total samples)
|
| 54 |
+
- Bar charts comparing performance across different UI types
|
| 55 |
+
- Baseline model comparisons (shown in orange)
|
| 56 |
+
|
| 57 |
+
4. **Explore Details**:
|
| 58 |
+
- Expand "Model Details" to see training metadata
|
| 59 |
+
- Expand "Detailed UI Type Breakdown" for a comprehensive table
|
| 60 |
+
- Expand "Raw Data" to inspect the complete JSON results
|
| 61 |
+
|
| 62 |
+
## Data Source
|
| 63 |
+
|
| 64 |
+
The app fetches data from the HuggingFace dataset repository:
|
| 65 |
+
- Repository: `mlfoundations-cua-dev/leaderboard`
|
| 66 |
+
- Path: `grounding/[dataset_name]/[model_results].json`
|
| 67 |
+
|
| 68 |
+
## Supported Datasets
|
| 69 |
+
|
| 70 |
+
- **ScreenSpot-v2**: Web and desktop UI element grounding
|
| 71 |
+
- **ScreenSpot-Pro**: Professional UI grounding benchmark
|
| 72 |
+
- **ShowdownClicks**: Click prediction benchmark
|
| 73 |
+
- And more as they are added to the leaderboard
|
| 74 |
+
|
| 75 |
+
## Baseline Models
|
| 76 |
+
|
| 77 |
+
For ScreenSpot-v2, the following baselines are included:
|
| 78 |
+
- Qwen2-VL-7B
|
| 79 |
+
- UI-TARS-2B
|
| 80 |
+
- UI-TARS-7B
|
| 81 |
+
- UI-TARS-72B
|
| 82 |
+
|
| 83 |
+
## Caching
|
| 84 |
+
|
| 85 |
+
Results are cached for 5 minutes to improve performance. The cache automatically refreshes to show new evaluation results.
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
pandas
|
| 3 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit>=1.28.0
|
| 2 |
+
pandas>=1.5.0
|
| 3 |
+
altair>=5.0.0
|
| 4 |
+
huggingface-hub>=0.19.0
|
| 5 |
+
numpy>=1.24.0
|
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,354 @@
|
|
|
|
|
|
|
|
| 1 |
import altair as alt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import streamlit as st
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
""
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
import altair as alt
|
| 4 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 5 |
+
import json
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
import os
|
| 8 |
+
from typing import Dict, List, Optional
|
| 9 |
import numpy as np
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Page config
|
| 12 |
+
st.set_page_config(
|
| 13 |
+
page_title="Grounding Benchmark Leaderboard",
|
| 14 |
+
page_icon="🎯",
|
| 15 |
+
layout="wide"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Constants
|
| 19 |
+
REPO_ID = "mlfoundations-cua-dev/leaderboard"
|
| 20 |
+
GROUNDING_PATH = "grounding"
|
| 21 |
+
|
| 22 |
+
# Baselines for different datasets
|
| 23 |
+
BASELINES = {
|
| 24 |
+
"screenspot-v2": {
|
| 25 |
+
"Qwen2-VL-7B": {
|
| 26 |
+
"desktop_text": 52.01,
|
| 27 |
+
"desktop_icon": 44.98,
|
| 28 |
+
"web_text": 33.04,
|
| 29 |
+
"web_icon": 21.84,
|
| 30 |
+
"overall": 37.96
|
| 31 |
+
},
|
| 32 |
+
"UI-TARS-2B": {
|
| 33 |
+
"desktop_text": 90.7,
|
| 34 |
+
"desktop_icon": 68.6,
|
| 35 |
+
"web_text": 87.2,
|
| 36 |
+
"web_icon": 84.7,
|
| 37 |
+
"overall": 82.8
|
| 38 |
+
},
|
| 39 |
+
"UI-TARS-7B": {
|
| 40 |
+
"desktop_text": 95.4,
|
| 41 |
+
"desktop_icon": 87.8,
|
| 42 |
+
"web_text": 93.8,
|
| 43 |
+
"web_icon": 91.6,
|
| 44 |
+
"overall": 92.2
|
| 45 |
+
},
|
| 46 |
+
"UI-TARS-72B": {
|
| 47 |
+
"desktop_text": 91.2,
|
| 48 |
+
"desktop_icon": 87.8,
|
| 49 |
+
"web_text": 87.7,
|
| 50 |
+
"web_icon": 86.3,
|
| 51 |
+
"overall": 88.3
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
@st.cache_data(ttl=300) # Cache for 5 minutes
|
| 57 |
+
def fetch_leaderboard_data():
|
| 58 |
+
"""Fetch all grounding results from HuggingFace leaderboard."""
|
| 59 |
+
api = HfApi()
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
# List all files in the grounding directory
|
| 63 |
+
files = api.list_repo_files(repo_id=REPO_ID, repo_type="dataset")
|
| 64 |
+
grounding_files = [f for f in files if f.startswith(f"{GROUNDING_PATH}/") and f.endswith(".json")]
|
| 65 |
+
|
| 66 |
+
results = []
|
| 67 |
+
for file_path in grounding_files:
|
| 68 |
+
try:
|
| 69 |
+
# Download and parse each JSON file
|
| 70 |
+
local_path = hf_hub_download(
|
| 71 |
+
repo_id=REPO_ID,
|
| 72 |
+
filename=file_path,
|
| 73 |
+
repo_type="dataset"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
with open(local_path, 'r') as f:
|
| 77 |
+
data = json.load(f)
|
| 78 |
+
|
| 79 |
+
# Extract key information
|
| 80 |
+
metadata = data.get("metadata", {})
|
| 81 |
+
metrics = data.get("metrics", {})
|
| 82 |
+
detailed_results = data.get("detailed_results", {})
|
| 83 |
+
|
| 84 |
+
# Parse the file path to get dataset and model info
|
| 85 |
+
path_parts = file_path.split('/')
|
| 86 |
+
dataset_name = path_parts[1] if len(path_parts) > 1 else "unknown"
|
| 87 |
+
|
| 88 |
+
# Get model name from metadata or path
|
| 89 |
+
model_name = metadata.get("model_checkpoint", "").split('/')[-1]
|
| 90 |
+
if not model_name and len(path_parts) > 2:
|
| 91 |
+
model_name = path_parts[2].replace("results_", "").replace(".json", "")
|
| 92 |
+
|
| 93 |
+
# Extract UI type results if available
|
| 94 |
+
ui_type_results = detailed_results.get("by_ui_type", {})
|
| 95 |
+
dataset_type_results = detailed_results.get("by_dataset_type", {})
|
| 96 |
+
|
| 97 |
+
results.append({
|
| 98 |
+
"dataset": dataset_name,
|
| 99 |
+
"model": model_name,
|
| 100 |
+
"model_path": metadata.get("model_checkpoint", ""),
|
| 101 |
+
"overall_accuracy": metrics.get("accuracy", 0) * 100, # Convert to percentage
|
| 102 |
+
"total_samples": metrics.get("total", 0),
|
| 103 |
+
"timestamp": metadata.get("evaluation_timestamp", ""),
|
| 104 |
+
"checkpoint_steps": metadata.get("checkpoint_steps"),
|
| 105 |
+
"training_loss": metadata.get("training_loss"),
|
| 106 |
+
"ui_type_results": ui_type_results,
|
| 107 |
+
"dataset_type_results": dataset_type_results,
|
| 108 |
+
"raw_data": data
|
| 109 |
+
})
|
| 110 |
+
|
| 111 |
+
except Exception as e:
|
| 112 |
+
st.warning(f"Error loading {file_path}: {str(e)}")
|
| 113 |
+
continue
|
| 114 |
+
|
| 115 |
+
return pd.DataFrame(results)
|
| 116 |
+
|
| 117 |
+
except Exception as e:
|
| 118 |
+
st.error(f"Error fetching leaderboard data: {str(e)}")
|
| 119 |
+
return pd.DataFrame()
|
| 120 |
+
|
| 121 |
+
def parse_ui_type_metrics(df: pd.DataFrame, dataset_filter: str) -> pd.DataFrame:
|
| 122 |
+
"""Parse UI type metrics from the results dataframe."""
|
| 123 |
+
metrics_list = []
|
| 124 |
+
|
| 125 |
+
for _, row in df.iterrows():
|
| 126 |
+
if row['dataset'] != dataset_filter:
|
| 127 |
+
continue
|
| 128 |
+
|
| 129 |
+
model = row['model']
|
| 130 |
+
ui_results = row['ui_type_results']
|
| 131 |
+
|
| 132 |
+
# For ScreenSpot datasets, we have desktop/web and text/icon
|
| 133 |
+
if 'screenspot' in dataset_filter.lower():
|
| 134 |
+
# Calculate aggregated metrics
|
| 135 |
+
desktop_text = ui_results.get('desktop_text', {}).get('correct', 0) / max(ui_results.get('desktop_text', {}).get('total', 1), 1) * 100
|
| 136 |
+
desktop_icon = ui_results.get('desktop_icon', {}).get('correct', 0) / max(ui_results.get('desktop_icon', {}).get('total', 1), 1) * 100
|
| 137 |
+
web_text = ui_results.get('web_text', {}).get('correct', 0) / max(ui_results.get('web_text', {}).get('total', 1), 1) * 100
|
| 138 |
+
web_icon = ui_results.get('web_icon', {}).get('correct', 0) / max(ui_results.get('web_icon', {}).get('total', 1), 1) * 100
|
| 139 |
+
|
| 140 |
+
# Calculate averages
|
| 141 |
+
desktop_avg = (desktop_text + desktop_icon) / 2 if desktop_text or desktop_icon else 0
|
| 142 |
+
web_avg = (web_text + web_icon) / 2 if web_text or web_icon else 0
|
| 143 |
+
text_avg = (desktop_text + web_text) / 2 if desktop_text or web_text else 0
|
| 144 |
+
icon_avg = (desktop_icon + web_icon) / 2 if desktop_icon or web_icon else 0
|
| 145 |
+
|
| 146 |
+
metrics_list.append({
|
| 147 |
+
'model': model,
|
| 148 |
+
'desktop_text': desktop_text,
|
| 149 |
+
'desktop_icon': desktop_icon,
|
| 150 |
+
'web_text': web_text,
|
| 151 |
+
'web_icon': web_icon,
|
| 152 |
+
'desktop_avg': desktop_avg,
|
| 153 |
+
'web_avg': web_avg,
|
| 154 |
+
'text_avg': text_avg,
|
| 155 |
+
'icon_avg': icon_avg,
|
| 156 |
+
'overall': row['overall_accuracy']
|
| 157 |
+
})
|
| 158 |
+
|
| 159 |
+
return pd.DataFrame(metrics_list)
|
| 160 |
+
|
| 161 |
+
def create_bar_chart(data: pd.DataFrame, metric: str, title: str):
|
| 162 |
+
"""Create a bar chart for a specific metric."""
|
| 163 |
+
# Prepare data for the chart
|
| 164 |
+
chart_data = []
|
| 165 |
+
|
| 166 |
+
# Add model results
|
| 167 |
+
for _, row in data.iterrows():
|
| 168 |
+
if metric in row and row[metric] > 0:
|
| 169 |
+
chart_data.append({
|
| 170 |
+
'Model': row['model'],
|
| 171 |
+
'Score': row[metric],
|
| 172 |
+
'Type': 'Evaluated'
|
| 173 |
+
})
|
| 174 |
+
|
| 175 |
+
# Add baselines if available
|
| 176 |
+
dataset = st.session_state.get('selected_dataset', '')
|
| 177 |
+
if dataset in BASELINES:
|
| 178 |
+
for baseline_name, baseline_metrics in BASELINES[dataset].items():
|
| 179 |
+
metric_key = metric.replace('_avg', '').replace('avg', 'overall')
|
| 180 |
+
if metric_key in baseline_metrics:
|
| 181 |
+
chart_data.append({
|
| 182 |
+
'Model': baseline_name,
|
| 183 |
+
'Score': baseline_metrics[metric_key],
|
| 184 |
+
'Type': 'Baseline'
|
| 185 |
+
})
|
| 186 |
+
|
| 187 |
+
if not chart_data:
|
| 188 |
+
return None
|
| 189 |
+
|
| 190 |
+
df_chart = pd.DataFrame(chart_data)
|
| 191 |
+
|
| 192 |
+
# Create the bar chart
|
| 193 |
+
chart = alt.Chart(df_chart).mark_bar().encode(
|
| 194 |
+
x=alt.X('Model:N',
|
| 195 |
+
sort=alt.EncodingSortField(field='Score', order='descending'),
|
| 196 |
+
axis=alt.Axis(labelAngle=-45)),
|
| 197 |
+
y=alt.Y('Score:Q',
|
| 198 |
+
scale=alt.Scale(domain=[0, 100]),
|
| 199 |
+
axis=alt.Axis(title='Score (%)')),
|
| 200 |
+
color=alt.Color('Type:N',
|
| 201 |
+
scale=alt.Scale(domain=['Evaluated', 'Baseline'],
|
| 202 |
+
range=['#4ECDC4', '#FFA726'])),
|
| 203 |
+
tooltip=['Model', 'Score', 'Type']
|
| 204 |
+
).properties(
|
| 205 |
+
title=title,
|
| 206 |
+
width=400,
|
| 207 |
+
height=300
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
# Add value labels
|
| 211 |
+
text = chart.mark_text(
|
| 212 |
+
align='center',
|
| 213 |
+
baseline='bottom',
|
| 214 |
+
dy=-5
|
| 215 |
+
).encode(
|
| 216 |
+
text=alt.Text('Score:Q', format='.1f')
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
return chart + text
|
| 220 |
+
|
| 221 |
+
def main():
|
| 222 |
+
st.title("🎯 Grounding Benchmark Leaderboard")
|
| 223 |
+
st.markdown("Visualization of model performance on grounding benchmarks")
|
| 224 |
+
|
| 225 |
+
# Fetch data
|
| 226 |
+
with st.spinner("Loading leaderboard data..."):
|
| 227 |
+
df = fetch_leaderboard_data()
|
| 228 |
+
|
| 229 |
+
if df.empty:
|
| 230 |
+
st.warning("No data available in the leaderboard.")
|
| 231 |
+
return
|
| 232 |
+
|
| 233 |
+
# Sidebar filters
|
| 234 |
+
st.sidebar.header("Filters")
|
| 235 |
+
|
| 236 |
+
# Dataset filter
|
| 237 |
+
datasets = sorted(df['dataset'].unique())
|
| 238 |
+
selected_dataset = st.sidebar.selectbox("Select Dataset", datasets)
|
| 239 |
+
st.session_state['selected_dataset'] = selected_dataset
|
| 240 |
+
|
| 241 |
+
# Filter data
|
| 242 |
+
filtered_df = df[df['dataset'] == selected_dataset]
|
| 243 |
+
|
| 244 |
+
# Model filter (optional)
|
| 245 |
+
models = ['All'] + sorted(filtered_df['model'].unique())
|
| 246 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
| 247 |
+
|
| 248 |
+
if selected_model != 'All':
|
| 249 |
+
filtered_df = filtered_df[filtered_df['model'] == selected_model]
|
| 250 |
+
|
| 251 |
+
# Main content
|
| 252 |
+
st.header(f"Results for {selected_dataset}")
|
| 253 |
+
|
| 254 |
+
# Overall metrics
|
| 255 |
+
col1, col2, col3 = st.columns(3)
|
| 256 |
+
with col1:
|
| 257 |
+
st.metric("Models Evaluated", len(filtered_df))
|
| 258 |
+
with col2:
|
| 259 |
+
if not filtered_df.empty:
|
| 260 |
+
best_acc = filtered_df['overall_accuracy'].max()
|
| 261 |
+
best_model = filtered_df[filtered_df['overall_accuracy'] == best_acc]['model'].iloc[0]
|
| 262 |
+
st.metric("Best Overall Accuracy", f"{best_acc:.1f}%", help=f"Model: {best_model}")
|
| 263 |
+
with col3:
|
| 264 |
+
total_samples = filtered_df['total_samples'].sum()
|
| 265 |
+
st.metric("Total Samples Evaluated", f"{total_samples:,}")
|
| 266 |
+
|
| 267 |
+
# Parse UI type metrics
|
| 268 |
+
ui_metrics_df = parse_ui_type_metrics(filtered_df, selected_dataset)
|
| 269 |
+
|
| 270 |
+
if not ui_metrics_df.empty and 'screenspot' in selected_dataset.lower():
|
| 271 |
+
st.subheader("Performance by UI Type")
|
| 272 |
+
|
| 273 |
+
# Create charts in a grid
|
| 274 |
+
col1, col2 = st.columns(2)
|
| 275 |
+
|
| 276 |
+
with col1:
|
| 277 |
+
# Overall Average
|
| 278 |
+
chart = create_bar_chart(ui_metrics_df, 'overall', 'Overall Average')
|
| 279 |
+
if chart:
|
| 280 |
+
st.altair_chart(chart, use_container_width=True)
|
| 281 |
+
|
| 282 |
+
# Desktop Average
|
| 283 |
+
chart = create_bar_chart(ui_metrics_df, 'desktop_avg', 'Desktop Average')
|
| 284 |
+
if chart:
|
| 285 |
+
st.altair_chart(chart, use_container_width=True)
|
| 286 |
+
|
| 287 |
+
# Text Average
|
| 288 |
+
chart = create_bar_chart(ui_metrics_df, 'text_avg', 'Text Average (UI-Type)')
|
| 289 |
+
if chart:
|
| 290 |
+
st.altair_chart(chart, use_container_width=True)
|
| 291 |
+
|
| 292 |
+
with col2:
|
| 293 |
+
# Web Average
|
| 294 |
+
chart = create_bar_chart(ui_metrics_df, 'web_avg', 'Web Average')
|
| 295 |
+
if chart:
|
| 296 |
+
st.altair_chart(chart, use_container_width=True)
|
| 297 |
+
|
| 298 |
+
# Icon Average
|
| 299 |
+
chart = create_bar_chart(ui_metrics_df, 'icon_avg', 'Icon Average (UI-Type)')
|
| 300 |
+
if chart:
|
| 301 |
+
st.altair_chart(chart, use_container_width=True)
|
| 302 |
+
|
| 303 |
+
# Detailed breakdown
|
| 304 |
+
with st.expander("Detailed UI Type Breakdown"):
|
| 305 |
+
# Create a heatmap-style table
|
| 306 |
+
detailed_metrics = []
|
| 307 |
+
for _, row in ui_metrics_df.iterrows():
|
| 308 |
+
detailed_metrics.append({
|
| 309 |
+
'Model': row['model'],
|
| 310 |
+
'Desktop Text': f"{row['desktop_text']:.1f}%",
|
| 311 |
+
'Desktop Icon': f"{row['desktop_icon']:.1f}%",
|
| 312 |
+
'Web Text': f"{row['web_text']:.1f}%",
|
| 313 |
+
'Web Icon': f"{row['web_icon']:.1f}%",
|
| 314 |
+
'Overall': f"{row['overall']:.1f}%"
|
| 315 |
+
})
|
| 316 |
+
|
| 317 |
+
if detailed_metrics:
|
| 318 |
+
st.dataframe(pd.DataFrame(detailed_metrics), use_container_width=True)
|
| 319 |
+
|
| 320 |
+
else:
|
| 321 |
+
# For non-ScreenSpot datasets, show a simple bar chart
|
| 322 |
+
st.subheader("Model Performance")
|
| 323 |
+
|
| 324 |
+
chart_data = filtered_df[['model', 'overall_accuracy']].copy()
|
| 325 |
+
chart_data.columns = ['Model', 'Accuracy']
|
| 326 |
+
|
| 327 |
+
chart = alt.Chart(chart_data).mark_bar().encode(
|
| 328 |
+
x=alt.X('Model:N', sort='-y', axis=alt.Axis(labelAngle=-45)),
|
| 329 |
+
y=alt.Y('Accuracy:Q', scale=alt.Scale(domain=[0, 100])),
|
| 330 |
+
tooltip=['Model', 'Accuracy']
|
| 331 |
+
).properties(
|
| 332 |
+
width=800,
|
| 333 |
+
height=400
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
st.altair_chart(chart, use_container_width=True)
|
| 337 |
+
|
| 338 |
+
# Model details table
|
| 339 |
+
with st.expander("Model Details"):
|
| 340 |
+
display_df = filtered_df[['model', 'overall_accuracy', 'total_samples', 'checkpoint_steps', 'training_loss', 'timestamp']].copy()
|
| 341 |
+
display_df.columns = ['Model', 'Accuracy (%)', 'Samples', 'Checkpoint Steps', 'Training Loss', 'Timestamp']
|
| 342 |
+
display_df['Accuracy (%)'] = display_df['Accuracy (%)'].apply(lambda x: f"{x:.2f}")
|
| 343 |
+
display_df['Training Loss'] = display_df['Training Loss'].apply(lambda x: f"{x:.4f}" if pd.notna(x) else "N/A")
|
| 344 |
+
st.dataframe(display_df, use_container_width=True)
|
| 345 |
+
|
| 346 |
+
# Raw data viewer
|
| 347 |
+
with st.expander("Raw Data"):
|
| 348 |
+
if selected_model != 'All' and len(filtered_df) == 1:
|
| 349 |
+
st.json(filtered_df.iloc[0]['raw_data'])
|
| 350 |
+
else:
|
| 351 |
+
st.info("Select a specific model to view raw data")
|
| 352 |
+
|
| 353 |
+
if __name__ == "__main__":
|
| 354 |
+
main()
|