mojitocup commited on
Commit
eac71e8
·
verified ·
1 Parent(s): 4424636
Files changed (1) hide show
  1. app.py +48 -91
app.py CHANGED
@@ -1,72 +1,57 @@
1
  import gradio as gr
 
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
 
 
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
 
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
44
  guidance_scale=guidance_scale,
45
  num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
  ).images[0]
50
 
51
  return image, seed
52
 
53
-
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
 
 
 
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
@@ -76,8 +61,7 @@ with gr.Blocks(css=css) as demo:
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
@@ -86,9 +70,7 @@ with gr.Blocks(css=css) as demo:
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
- visible=False,
90
  )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -96,59 +78,34 @@ with gr.Blocks(css=css) as demo:
96
  step=1,
97
  value=0,
98
  )
99
-
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
  gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ import spaces
3
  import numpy as np
4
  import random
 
 
 
5
  import torch
6
+ from diffusers import StableDiffusionXLPipeline
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ dtype = torch.float16
 
 
 
 
 
10
 
11
+ repo = "stabilityai/stable-diffusion-xl-base-1.0"
12
+ pipe = StableDiffusionXLPipeline.from_pretrained(
13
+ repo,
14
+ torch_dtype=dtype,
15
+ use_safetensors=True
16
+ ).to(device)
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
+
20
+ @spaces.GPU
21
+ def infer(prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
 
 
22
  if randomize_seed:
23
  seed = random.randint(0, MAX_SEED)
24
+ generator = torch.Generator(device=device).manual_seed(seed)
 
25
 
26
  image = pipe(
27
  prompt=prompt,
28
  negative_prompt=negative_prompt,
29
  guidance_scale=guidance_scale,
30
  num_inference_steps=num_inference_steps,
31
+ generator=generator
 
 
32
  ).images[0]
33
 
34
  return image, seed
35
 
 
36
  examples = [
37
+ "A cozy Scandinavian living room, soft light, natural wood, white tones",
38
+ "A futuristic cityscape at night with flying cars",
39
+ "A magical forest with glowing mushrooms and fairies"
40
  ]
41
 
42
  css = """
43
  #col-container {
44
  margin: 0 auto;
45
+ max-width: 580px;
46
  }
47
  """
48
 
49
  with gr.Blocks(css=css) as demo:
50
  with gr.Column(elem_id="col-container"):
51
+ gr.Markdown(f"""
52
+ # Generate images [Stable Diffusion XL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
53
+ Generate high-quality images with Stability AI's flagship SDXL base model.
54
+ """)
55
 
56
  with gr.Row():
57
  prompt = gr.Text(
 
61
  placeholder="Enter your prompt",
62
  container=False,
63
  )
64
+ run_button = gr.Button("Run", scale=0)
 
65
 
66
  result = gr.Image(label="Result", show_label=False)
67
 
 
70
  label="Negative prompt",
71
  max_lines=1,
72
  placeholder="Enter a negative prompt",
 
73
  )
 
74
  seed = gr.Slider(
75
  label="Seed",
76
  minimum=0,
 
78
  step=1,
79
  value=0,
80
  )
 
81
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
82
 
83
+ guidance_scale = gr.Slider(
84
+ label="Guidance scale",
85
+ minimum=0.0,
86
+ maximum=20.0,
87
+ step=0.1,
88
+ value=7.5,
89
+ )
90
+
91
+ num_inference_steps = gr.Slider(
92
+ label="Number of inference steps",
93
+ minimum=1,
94
+ maximum=50,
95
+ step=1,
96
+ value=30,
97
+ )
98
+
99
+ gr.Examples(
100
+ examples=examples,
101
+ inputs=[prompt]
102
+ )
103
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  gr.on(
105
+ triggers=[run_button.click, prompt.submit, negative_prompt.submit],
106
  fn=infer,
107
+ inputs=[prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
108
+ outputs=[result, seed]
 
 
 
 
 
 
 
 
 
109
  )
110
 
111
+ demo.launch()