File size: 5,104 Bytes
d7016b3
 
 
 
 
 
55fd1c7
d7016b3
 
 
55fd1c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7016b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import multiprocessing as mp
import torch
import os
from functools import partial
import gradio as gr
import traceback
from huggingface_hub import hf_hub_download, snapshot_download
from tts.infer_cli import MegaTTS3DiTInfer, convert_to_wav, cut_wav


def download_weights():
    """Download model weights from HuggingFace if not already present."""
    repo_id = "mrfakename/MegaTTS3-VoiceCloning"
    weights_dir = "weights"
    
    if not os.path.exists(weights_dir):
        print("Downloading model weights from HuggingFace...")
        snapshot_download(
            repo_id=repo_id,
            local_dir=weights_dir,
            local_dir_use_symlinks=False
        )
        print("Model weights downloaded successfully!")
    else:
        print("Model weights already exist.")
    
    return weights_dir


def model_worker(input_queue, output_queue, device_id):
    device = None
    if device_id is not None:
        device = torch.device(f'cuda:{device_id}')
    infer_pipe = MegaTTS3DiTInfer(device=device)

    while True:
        task = input_queue.get()
        inp_audio_path, inp_text, infer_timestep, p_w, t_w = task
        try:
            convert_to_wav(inp_audio_path)
            wav_path = os.path.splitext(inp_audio_path)[0] + '.wav'
            cut_wav(wav_path, max_len=28)
            with open(wav_path, 'rb') as file:
                file_content = file.read()
            resource_context = infer_pipe.preprocess(file_content)
            wav_bytes = infer_pipe.forward(resource_context, inp_text, time_step=infer_timestep, p_w=p_w, t_w=t_w)
            output_queue.put(wav_bytes)
        except Exception as e:
            traceback.print_exc()
            print(task, str(e))
            output_queue.put(None)


def generate_speech(inp_audio, inp_text, infer_timestep, p_w, t_w, processes, input_queue, output_queue):
    if not inp_audio or not inp_text:
        gr.Warning("Please provide both reference audio and text to generate.")
        return None
    
    print("Generating speech with:", inp_audio, inp_text, infer_timestep, p_w, t_w)
    input_queue.put((inp_audio, inp_text, infer_timestep, p_w, t_w))
    res = output_queue.get()
    if res is not None:
        return res
    else:
        gr.Warning("Speech generation failed. Please try again.")
        return None


if __name__ == '__main__':
    mp.set_start_method('spawn', force=True)
    mp_manager = mp.Manager()

    devices = os.environ.get('CUDA_VISIBLE_DEVICES', '')
    if devices != '':
        devices = os.environ.get('CUDA_VISIBLE_DEVICES', '').split(",")
    else:
        devices = None
    
    num_workers = 1
    input_queue = mp_manager.Queue()
    output_queue = mp_manager.Queue()
    processes = []

    print("Starting workers...")
    for i in range(num_workers):
        p = mp.Process(target=model_worker, args=(input_queue, output_queue, i % len(devices) if devices is not None else None))
        p.start()
        processes.append(p)

    with gr.Blocks(title="MegaTTS3 Voice Cloning") as demo:
        gr.Markdown("# MegaTTS3 Voice Cloning")
        gr.Markdown("Upload a reference audio clip and enter text to generate speech with the cloned voice.")
        
        with gr.Row():
            with gr.Column():
                reference_audio = gr.Audio(
                    label="Reference Audio",
                    type="filepath",
                    sources=["upload", "microphone"]
                )
                text_input = gr.Textbox(
                    label="Text to Generate",
                    placeholder="Enter the text you want to synthesize...",
                    lines=3
                )
                
                with gr.Accordion("Advanced Options", open=False):
                    infer_timestep = gr.Number(
                        label="Inference Timesteps",
                        value=32,
                        minimum=1,
                        maximum=100,
                        step=1
                    )
                    p_w = gr.Number(
                        label="Intelligibility Weight",
                        value=1.4,
                        minimum=0.1,
                        maximum=5.0,
                        step=0.1
                    )
                    t_w = gr.Number(
                        label="Similarity Weight", 
                        value=3.0,
                        minimum=0.1,
                        maximum=10.0,
                        step=0.1
                    )
                
                generate_btn = gr.Button("Generate Speech", variant="primary")
            
            with gr.Column():
                output_audio = gr.Audio(label="Generated Audio")
        
        generate_btn.click(
            fn=partial(generate_speech, processes=processes, input_queue=input_queue, output_queue=output_queue),
            inputs=[reference_audio, text_input, infer_timestep, p_w, t_w],
            outputs=[output_audio]
        )

    demo.launch(server_name='0.0.0.0', server_port=7860, debug=True)
    
    for p in processes:
        p.join()