Spaces:
Running
on
Zero
Running
on
Zero
| """ | |
| """ | |
| import contextlib | |
| from contextvars import ContextVar | |
| from io import BytesIO | |
| from typing import Any | |
| from typing import cast | |
| from unittest.mock import patch | |
| import torch | |
| from torch._inductor.package.package import package_aoti | |
| from torch.export.pt2_archive._package import AOTICompiledModel | |
| from torch.export.pt2_archive._package_weights import Weights | |
| INDUCTOR_CONFIGS_OVERRIDES = { | |
| 'aot_inductor.package_constants_in_so': False, | |
| 'aot_inductor.package_constants_on_disk': True, | |
| 'aot_inductor.package': True, | |
| } | |
| class ZeroGPUWeights: | |
| def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False): | |
| if to_cuda: | |
| self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()} | |
| else: | |
| self.constants_map = constants_map | |
| def __reduce__(self): | |
| constants_map: dict[str, torch.Tensor] = {} | |
| for name, tensor in self.constants_map.items(): | |
| tensor_ = torch.empty_like(tensor, device='cpu').pin_memory() | |
| constants_map[name] = tensor_.copy_(tensor).detach().share_memory_() | |
| return ZeroGPUWeights, (constants_map, True) | |
| class ZeroGPUCompiledModel: | |
| def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights): | |
| self.archive_file = archive_file | |
| self.weights = weights | |
| self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None) | |
| def __call__(self, *args, **kwargs): | |
| if (compiled_model := self.compiled_model.get()) is None: | |
| compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file)) | |
| compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True) | |
| self.compiled_model.set(compiled_model) | |
| return compiled_model(*args, **kwargs) | |
| def __reduce__(self): | |
| return ZeroGPUCompiledModel, (self.archive_file, self.weights) | |
| def aoti_compile( | |
| exported_program: torch.export.ExportedProgram, | |
| inductor_configs: dict[str, Any] | None = None, | |
| ): | |
| inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES | |
| gm = cast(torch.fx.GraphModule, exported_program.module()) | |
| assert exported_program.example_inputs is not None | |
| args, kwargs = exported_program.example_inputs | |
| artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs) | |
| archive_file = BytesIO() | |
| files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)] | |
| package_aoti(archive_file, files) | |
| weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights)) | |
| zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights}) | |
| return ZeroGPUCompiledModel(archive_file, zerogpu_weights) | |
| def capture_component_call( | |
| pipeline: Any, | |
| component_name: str, | |
| component_method='forward', | |
| ): | |
| class CapturedCallException(Exception): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__() | |
| self.args = args | |
| self.kwargs = kwargs | |
| class CapturedCall: | |
| def __init__(self): | |
| self.args: tuple[Any, ...] = () | |
| self.kwargs: dict[str, Any] = {} | |
| component = getattr(pipeline, component_name) | |
| captured_call = CapturedCall() | |
| def capture_call(*args, **kwargs): | |
| raise CapturedCallException(*args, **kwargs) | |
| with patch.object(component, component_method, new=capture_call): | |
| try: | |
| yield captured_call | |
| except CapturedCallException as e: | |
| captured_call.args = e.args | |
| captured_call.kwargs = e.kwargs | |
| def drain_module_parameters(module: torch.nn.Module): | |
| state_dict_meta = {name: {'device': tensor.device, 'dtype': tensor.dtype} for name, tensor in module.state_dict().items()} | |
| state_dict = {name: torch.nn.Parameter(torch.empty_like(tensor, device='cpu')) for name, tensor in module.state_dict().items()} | |
| module.load_state_dict(state_dict, assign=True) | |
| for name, param in state_dict.items(): | |
| meta = state_dict_meta[name] | |
| param.data = torch.Tensor([]).to(**meta) | |