Spaces:
Running
on
Zero
Running
on
Zero
Add generate tab
Browse files
app.py
CHANGED
|
@@ -15,6 +15,7 @@ import numpy as np
|
|
| 15 |
from PIL import Image
|
| 16 |
import random
|
| 17 |
import gc
|
|
|
|
| 18 |
|
| 19 |
# Import the optimization function from the separate file
|
| 20 |
from optimization import optimize_pipeline_
|
|
@@ -66,9 +67,8 @@ for i in range(3):
|
|
| 66 |
torch.cuda.synchronize()
|
| 67 |
torch.cuda.empty_cache()
|
| 68 |
|
| 69 |
-
# Calling the imported optimization function with a placeholder image for compilation tracing
|
| 70 |
optimize_pipeline_(pipe,
|
| 71 |
-
image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)),
|
| 72 |
prompt='prompt',
|
| 73 |
height=MIN_DIMENSION,
|
| 74 |
width=MAX_DIMENSION,
|
|
@@ -78,6 +78,43 @@ print("All models loaded and optimized. Gradio app is ready.")
|
|
| 78 |
|
| 79 |
|
| 80 |
# --- 2. Image Processing and Application Logic ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
def process_image_for_video(image: Image.Image) -> Image.Image:
|
| 83 |
"""
|
|
@@ -199,23 +236,37 @@ def generate_video(
|
|
| 199 |
return video_path, current_seed
|
| 200 |
|
| 201 |
|
| 202 |
-
# --- 3. Gradio User Interface ---
|
| 203 |
|
| 204 |
css = '''
|
| 205 |
.fillable{max-width: 1100px !important}
|
| 206 |
.dark .progress-text {color: white}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
'''
|
| 208 |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 209 |
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 210 |
gr.Markdown("Based on the [Wan 2.2 First/Last Frame workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/), applied to 🧨 Diffusers + [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA")
|
| 211 |
|
| 212 |
-
with gr.Row():
|
| 213 |
with gr.Column():
|
| 214 |
-
with gr.Group():
|
| 215 |
with gr.Row():
|
| 216 |
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 220 |
|
| 221 |
with gr.Accordion("Advanced Settings", open=False):
|
|
@@ -233,7 +284,7 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 233 |
with gr.Column():
|
| 234 |
output_video = gr.Video(label="Generated Video", autoplay=True)
|
| 235 |
|
| 236 |
-
#
|
| 237 |
ui_inputs = [
|
| 238 |
start_image,
|
| 239 |
end_image,
|
|
@@ -246,7 +297,6 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 246 |
seed_input,
|
| 247 |
randomize_seed_checkbox
|
| 248 |
]
|
| 249 |
-
# The seed_input is both an input and an output to reflect the randomly generated seed
|
| 250 |
ui_outputs = [output_video, seed_input]
|
| 251 |
|
| 252 |
generate_button.click(
|
|
@@ -255,6 +305,20 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 255 |
outputs=ui_outputs
|
| 256 |
)
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
gr.Examples(
|
| 259 |
examples=[
|
| 260 |
["poli_tower.png", "tower_takes_off.png", "the man turns around"],
|
|
@@ -268,4 +332,4 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 268 |
)
|
| 269 |
|
| 270 |
if __name__ == "__main__":
|
| 271 |
-
app.launch(share=True
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
import random
|
| 17 |
import gc
|
| 18 |
+
from gradio_client import Client, handle_file # Import for API call
|
| 19 |
|
| 20 |
# Import the optimization function from the separate file
|
| 21 |
from optimization import optimize_pipeline_
|
|
|
|
| 67 |
torch.cuda.synchronize()
|
| 68 |
torch.cuda.empty_cache()
|
| 69 |
|
|
|
|
| 70 |
optimize_pipeline_(pipe,
|
| 71 |
+
image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)),
|
| 72 |
prompt='prompt',
|
| 73 |
height=MIN_DIMENSION,
|
| 74 |
width=MAX_DIMENSION,
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
# --- 2. Image Processing and Application Logic ---
|
| 81 |
+
def generate_end_frame(start_img, gen_prompt, progress=gr.Progress(track_tqdm=True)):
|
| 82 |
+
"""Calls an external Gradio API to generate an image."""
|
| 83 |
+
if start_img is None:
|
| 84 |
+
raise gr.Error("Please provide a Start Frame first.")
|
| 85 |
+
|
| 86 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 87 |
+
if not hf_token:
|
| 88 |
+
raise gr.Error("HF_TOKEN not found in environment variables. Please set it in your Space secrets.")
|
| 89 |
+
|
| 90 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
| 91 |
+
start_img.save(tmpfile.name)
|
| 92 |
+
tmp_path = tmpfile.name
|
| 93 |
+
|
| 94 |
+
progress(0.1, desc="Connecting to image generation API...")
|
| 95 |
+
client = Client("multimodalart/nano-banana")
|
| 96 |
+
|
| 97 |
+
progress(0.5, desc=f"Generating with prompt: '{gen_prompt}'...")
|
| 98 |
+
try:
|
| 99 |
+
result = client.predict(
|
| 100 |
+
prompt=gen_prompt,
|
| 101 |
+
images=[
|
| 102 |
+
{"image": handle_file(tmp_path)}
|
| 103 |
+
],
|
| 104 |
+
manual_token=hf_token,
|
| 105 |
+
api_name="/unified_image_generator"
|
| 106 |
+
)
|
| 107 |
+
finally:
|
| 108 |
+
os.remove(tmp_path)
|
| 109 |
+
|
| 110 |
+
progress(1.0, desc="Done!")
|
| 111 |
+
print(result)
|
| 112 |
+
return result
|
| 113 |
+
|
| 114 |
+
def switch_to_upload_tab():
|
| 115 |
+
"""Returns a gr.Tabs update to switch to the first tab."""
|
| 116 |
+
return gr.Tabs(selected="upload_tab")
|
| 117 |
+
|
| 118 |
|
| 119 |
def process_image_for_video(image: Image.Image) -> Image.Image:
|
| 120 |
"""
|
|
|
|
| 236 |
return video_path, current_seed
|
| 237 |
|
| 238 |
|
| 239 |
+
# --- 3. Gradio User Interface ---
|
| 240 |
|
| 241 |
css = '''
|
| 242 |
.fillable{max-width: 1100px !important}
|
| 243 |
.dark .progress-text {color: white}
|
| 244 |
+
#general_items{margin-top: 2em}
|
| 245 |
+
#group_all{overflow:visible}
|
| 246 |
+
#group_all .styler{overflow:visible}
|
| 247 |
+
#group_tabs .tabitem{padding: 0}
|
| 248 |
+
.tab-wrapper{margin-top: -33px;z-index: 999;position: absolute;width: 100%;background-color: var(--block-background-fill);padding: 0;}
|
| 249 |
+
#component-9-button{width: 50%;justify-content: center}
|
| 250 |
+
#component-11-button{width: 50%;justify-content: center}
|
| 251 |
+
#or_item{text-align: center; padding-top: 1em; padding-bottom: 1em; font-size: 1.1em;margin-left: .5em;margin-right: .5em;width: calc(100% - 1em)}
|
| 252 |
+
#fivesec{margin-top: 5em;margin-left: .5em;margin-right: .5em;width: calc(100% - 1em)}
|
| 253 |
'''
|
| 254 |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 255 |
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 256 |
gr.Markdown("Based on the [Wan 2.2 First/Last Frame workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/), applied to 🧨 Diffusers + [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) 8-step LoRA")
|
| 257 |
|
| 258 |
+
with gr.Row(elem_id="general_items"):
|
| 259 |
with gr.Column():
|
| 260 |
+
with gr.Group(elem_id="group_all"):
|
| 261 |
with gr.Row():
|
| 262 |
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
|
| 263 |
+
# Capture the Tabs component in a variable and assign IDs to tabs
|
| 264 |
+
with gr.Tabs(elem_id="group_tabs") as tabs:
|
| 265 |
+
with gr.TabItem("Upload", id="upload_tab"):
|
| 266 |
+
end_image = gr.Image(type="pil", label="End Frame", sources=["upload", "clipboard"])
|
| 267 |
+
with gr.TabItem("Generate", id="generate_tab"):
|
| 268 |
+
generate_5seconds = gr.Button("Generate scene 5 seconds in the future", elem_id="fivesec")
|
| 269 |
+
gr.Markdown("Generate a custom end-frame with an edit model like [Nano Banana](https://huggingface.co/spaces/multimodalart/nano-banana) or [Qwen Image Edit](https://huggingface.co/spaces/multimodalart/Qwen-Image-Edit-Fast)", elem_id="or_item")
|
| 270 |
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 271 |
|
| 272 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
| 284 |
with gr.Column():
|
| 285 |
output_video = gr.Video(label="Generated Video", autoplay=True)
|
| 286 |
|
| 287 |
+
# Main video generation button
|
| 288 |
ui_inputs = [
|
| 289 |
start_image,
|
| 290 |
end_image,
|
|
|
|
| 297 |
seed_input,
|
| 298 |
randomize_seed_checkbox
|
| 299 |
]
|
|
|
|
| 300 |
ui_outputs = [output_video, seed_input]
|
| 301 |
|
| 302 |
generate_button.click(
|
|
|
|
| 305 |
outputs=ui_outputs
|
| 306 |
)
|
| 307 |
|
| 308 |
+
generate_5seconds.click(
|
| 309 |
+
fn=switch_to_upload_tab,
|
| 310 |
+
inputs=None,
|
| 311 |
+
outputs=[tabs]
|
| 312 |
+
).then(
|
| 313 |
+
fn=lambda img: generate_end_frame(img, "this image is a still frame from a movie. generate a new frame with what happens on this scene 5 seconds in the future"),
|
| 314 |
+
inputs=[start_image],
|
| 315 |
+
outputs=[end_image]
|
| 316 |
+
).then(
|
| 317 |
+
fn=generate_video,
|
| 318 |
+
inputs=ui_inputs,
|
| 319 |
+
outputs=ui_outputs
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
gr.Examples(
|
| 323 |
examples=[
|
| 324 |
["poli_tower.png", "tower_takes_off.png", "the man turns around"],
|
|
|
|
| 332 |
)
|
| 333 |
|
| 334 |
if __name__ == "__main__":
|
| 335 |
+
app.launch(share=True)
|