Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| def load_model(): | |
| model_id="karpathy/nanochat-d32" | |
| revision="refs/pr/1" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False, revision=revision) | |
| model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=False, dtype=torch.bfloat16, revision=revision).to(device) | |
| model.eval() | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| def generate(prompt, history): | |
| if len(history) > 0: | |
| messages = history + [ | |
| {"role": "user", "content": prompt}, | |
| ] | |
| else: | |
| messages = [ | |
| {"role": "user", "content": prompt}, | |
| ] | |
| print(history) | |
| inputs = tokenizer.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_tensors="pt", | |
| return_dict=True, | |
| ).to(device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=512, | |
| ) | |
| generated_tokens = outputs[0, inputs.input_ids.shape[1]:] | |
| output = tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
| return output | |
| demo = gr.ChatInterface(fn=generate, type="messages", examples=["hello", "hola", "merhaba"], title="NanoChat") | |
| demo.launch() |