Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| from joblib import load | |
| # Load Pkgs | |
| from sklearn.multioutput import MultiOutputClassifier | |
| import pandas as pd | |
| import numpy as np | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| from torch.utils.data import Dataset, DataLoader | |
| from sklearn.model_selection import train_test_split | |
| from sklearn.feature_extraction.text import CountVectorizer | |
| import joblib | |
| # Load the saved model | |
| model_file = "drug_finder_3i_knn.joblib" | |
| loaded_model = load(model_file) | |
| def predict_drug(text_input): | |
| # Perform prediction using the loaded model | |
| prediction = loaded_model.predict([text_input])[0] | |
| #drug_name = prediction[0] | |
| drug_uses = prediction[0] | |
| drug_dosage = prediction[1] | |
| drug_side_effects = prediction[2] | |
| output_text = f"USES:\n\n {drug_uses} \n\nDOSAGE:\n\n {drug_dosage} \n\nSIDE EFFECTS:\n\n {drug_side_effects} \n" | |
| return output_text | |
| # Create the interface | |
| iface = gr.Interface( | |
| fn=predict_drug, | |
| inputs=gr.inputs.Textbox(lines=3, label="Enter drug name here: "), | |
| outputs=gr.outputs.Textbox(label="\n\nPredicted drug details\n\n") | |
| ) | |
| # Launch the interface | |
| iface.launch() | |