Spaces:
Build error
Build error
temp
Browse files
app.py
CHANGED
|
@@ -6,11 +6,10 @@ from how.networks import how_net
|
|
| 6 |
|
| 7 |
import fire_network
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
# Possible Scales for multiscale inference
|
| 11 |
-
|
| 12 |
-
infer_opts = {"scales": scales, "features_num": 1000}
|
| 13 |
-
|
| 14 |
|
| 15 |
# Load net
|
| 16 |
state = torch.load('fire.pth', map_location='cpu')
|
|
@@ -18,28 +17,42 @@ state['net_params']['pretrained'] = None # no need for imagenet pretrained model
|
|
| 18 |
net = fire_network.init_network(**state['net_params']).to(device)
|
| 19 |
net.load_state_dict(state['state_dict'])
|
| 20 |
|
| 21 |
-
|
| 22 |
transforms.Resize(1024),
|
| 23 |
transforms.ToTensor(),
|
| 24 |
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
|
| 25 |
])
|
| 26 |
|
| 27 |
|
| 28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def generate_matching_superfeatures(im1, im2, scale=6):
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
output1 = net.get_superfeatures(im1.to(device), scales=scales)
|
| 34 |
-
feats1 = output1[0]
|
| 35 |
-
attns1 = output1[1]
|
| 36 |
-
strenghts1 = output1[2]
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
attns2 = output2[1]
|
| 41 |
-
strenghts2 = output2[2]
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
|
|
|
| 6 |
|
| 7 |
import fire_network
|
| 8 |
|
| 9 |
+
import cv2
|
| 10 |
|
| 11 |
# Possible Scales for multiscale inference
|
| 12 |
+
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Load net
|
| 15 |
state = torch.load('fire.pth', map_location='cpu')
|
|
|
|
| 17 |
net = fire_network.init_network(**state['net_params']).to(device)
|
| 18 |
net.load_state_dict(state['state_dict'])
|
| 19 |
|
| 20 |
+
transform = transforms.Compose([
|
| 21 |
transforms.Resize(1024),
|
| 22 |
transforms.ToTensor(),
|
| 23 |
transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))
|
| 24 |
])
|
| 25 |
|
| 26 |
|
| 27 |
+
# which sf
|
| 28 |
+
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
col = plt.get_cmap('tab10')
|
| 32 |
+
|
| 33 |
def generate_matching_superfeatures(im1, im2, scale=6):
|
| 34 |
|
| 35 |
+
im1_tensor = transform(im1)
|
| 36 |
+
im2_tensor = transform(im2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
im1_cv = cv2.imread(im1)
|
| 39 |
+
im2_cv = cv2.imread(im2)
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# extract features
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
output1 = net.get_superfeatures(im1.to(device), scales=scales)
|
| 44 |
+
feats1 = output1[0]
|
| 45 |
+
attns1 = output1[1]
|
| 46 |
+
strenghts1 = output1[2]
|
| 47 |
+
|
| 48 |
+
output2 = net.get_superfeatures(im2.to(device), scales=scales)
|
| 49 |
+
feats2 = output2[0]
|
| 50 |
+
attns2 = output2[1]
|
| 51 |
+
strenghts2 = output2[2]
|
| 52 |
+
|
| 53 |
+
print(feats1.shape)
|
| 54 |
+
print(attns1.shape)
|
| 55 |
+
print(strenghts1.shape)
|
| 56 |
|
| 57 |
|
| 58 |
|