Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
# Load model directly
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import transformers
|
| 9 |
+
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained("nebiyu29/fintunned-v2-roberta_GA")
|
| 11 |
+
model = AutoModelForSequenceClassification.from_pretrained("nebiyu29/fintunned-v2-roberta_GA")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Load the model and tokenizer
|
| 15 |
+
# model = transformers.AutoModelForSequenceClassification.from_pretrained("facebook/bart-large-mnli")
|
| 16 |
+
|
| 17 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained("facebook/bart-large-mnli")
|
| 18 |
+
|
| 19 |
+
# Define a function to split a text into segments of 512 tokens
|
| 20 |
+
def split_text(text):
|
| 21 |
+
# Tokenize the text
|
| 22 |
+
tokens = tokenizer.tokenize(text)
|
| 23 |
+
# Initialize an empty list for segments
|
| 24 |
+
segments = []
|
| 25 |
+
# Initialize an empty list for current segment
|
| 26 |
+
current_segment = []
|
| 27 |
+
# Initialize a counter for tokens
|
| 28 |
+
token_count = 0
|
| 29 |
+
# Loop through the tokens
|
| 30 |
+
for token in tokens:
|
| 31 |
+
# Add the token to the current segment
|
| 32 |
+
current_segment.append(token)
|
| 33 |
+
# Increment the token count
|
| 34 |
+
token_count += 1
|
| 35 |
+
# If the token count reaches 512 or the end of the text, add the current segment to the segments list
|
| 36 |
+
if token_count == 512 or token == tokens[-1]:
|
| 37 |
+
# Convert the current segment to a string and add it to the segments list
|
| 38 |
+
segments.append(tokenizer.convert_tokens_to_string(current_segment))
|
| 39 |
+
# Reset the current segment and the token count
|
| 40 |
+
current_segment = []
|
| 41 |
+
token_count = 0
|
| 42 |
+
# Return the segments list
|
| 43 |
+
return segments
|
| 44 |
+
|
| 45 |
+
# a function that classifies text
|
| 46 |
+
|
| 47 |
+
def classify_text(text):
|
| 48 |
+
# Define labels
|
| 49 |
+
labels = ["depression", "anxiety", "bipolar disorder", "schizophrenia", "PTSD", "OCD", "ADHD", "autism", "eating disorder", "personality disorder", "phobia"]
|
| 50 |
+
|
| 51 |
+
# Split text into segments using split_text
|
| 52 |
+
segments = split_text(text)
|
| 53 |
+
|
| 54 |
+
# Initialize empty list for predictions
|
| 55 |
+
predictions = []
|
| 56 |
+
|
| 57 |
+
# Move device to GPU if available
|
| 58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
+
model = model.to(device)
|
| 60 |
+
|
| 61 |
+
# Loop through segments, process, and store predictions
|
| 62 |
+
for segment in segments:
|
| 63 |
+
inputs = tokenizer([segment], padding=True, return_tensors="pt")
|
| 64 |
+
input_ids = inputs["input_ids"].to(device)
|
| 65 |
+
attention_mask = inputs["attention_mask"].to(device)
|
| 66 |
+
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
| 69 |
+
|
| 70 |
+
# Extract predictions for each segment
|
| 71 |
+
probs, preds = extract_predictions(outputs) # Define this function based on your model's output
|
| 72 |
+
|
| 73 |
+
# Append predictions for this segment
|
| 74 |
+
predictions.append({
|
| 75 |
+
"segment_text": segment,
|
| 76 |
+
"label": preds[0], # Assuming single label prediction
|
| 77 |
+
"probability": probs[preds[0]] # Access probability for the predicted label
|
| 78 |
+
})
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Define a function to extract predictions from model output (adjust as needed)
|
| 83 |
+
def extract_predictions(outputs):
|
| 84 |
+
# Assuming outputs contain logits and labels (adapt based on your model's output format)
|
| 85 |
+
logits = outputs.logits
|
| 86 |
+
probs = logits.softmax(dim=1)
|
| 87 |
+
preds = torch.argmax(probs, dim=1)
|
| 88 |
+
return probs, preds # Return all probabilities and predicted labels
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# def classify_text(text):
|
| 93 |
+
# """
|
| 94 |
+
# This function preprocesses, feeds text to the model, and outputs the predicted class.
|
| 95 |
+
# """
|
| 96 |
+
# inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
| 97 |
+
# outputs = model(**inputs)
|
| 98 |
+
# logits = outputs.logits # Access logits instead of pipeline output
|
| 99 |
+
# predictions = torch.argmax(logits, dim=-1) # Apply argmax for prediction
|
| 100 |
+
# return model.config.id2label[predictions.item()] # Map index to class label
|
| 101 |
+
|
| 102 |
+
interface = gr.Interface(
|
| 103 |
+
fn=classify_text,
|
| 104 |
+
inputs="text",
|
| 105 |
+
outputs="text",
|
| 106 |
+
title="Text Classification Demo",
|
| 107 |
+
description="Enter some text, and the model will classify it.",
|
| 108 |
+
#choices=["depression", "anxiety", "bipolar disorder", "schizophrenia", "PTSD", "OCD", "ADHD", "autism", "eating disorder", "personality disorder", "phobia"] # Adjust class names
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
#interface.launch()
|