Spaces:
Runtime error
Runtime error
jinsol-neubla
commited on
Commit
·
8cc8a87
1
Parent(s):
73dcc35
Add FP8 and fake_quant filter
Browse filesSigned-off-by: jinsol-neubla <[email protected]>
- app.py +20 -3
- src/display/utils.py +17 -0
- src/leaderboard/read_evals.py +24 -15
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import gradio as gr
|
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
-
from gradio_space_ci import enable_space_ci
|
| 7 |
|
| 8 |
from src.display.about import (
|
| 9 |
INTRODUCTION_TEXT,
|
|
@@ -25,6 +25,7 @@ from src.display.utils import (
|
|
| 25 |
fields,
|
| 26 |
WeightType,
|
| 27 |
Precision,
|
|
|
|
| 28 |
)
|
| 29 |
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, REPO_ID, HF_TOKEN
|
| 30 |
from src.populate import get_leaderboard_df
|
|
@@ -84,6 +85,7 @@ def update_table(
|
|
| 84 |
activation_precision_query: str,
|
| 85 |
size_query: list,
|
| 86 |
hide_models: list,
|
|
|
|
| 87 |
query: str,
|
| 88 |
):
|
| 89 |
filtered_df = filter_models(
|
|
@@ -93,6 +95,7 @@ def update_table(
|
|
| 93 |
weight_precision_query=weight_precision_query,
|
| 94 |
activation_precision_query=activation_precision_query,
|
| 95 |
hide_models=hide_models,
|
|
|
|
| 96 |
)
|
| 97 |
filtered_df = filter_queries(query, filtered_df)
|
| 98 |
df = select_columns(filtered_df, columns)
|
|
@@ -153,6 +156,7 @@ def filter_models(
|
|
| 153 |
weight_precision_query: list,
|
| 154 |
activation_precision_query: list,
|
| 155 |
hide_models: list,
|
|
|
|
| 156 |
) -> pd.DataFrame:
|
| 157 |
# Show all models
|
| 158 |
if "Private or deleted" in hide_models:
|
|
@@ -175,6 +179,7 @@ def filter_models(
|
|
| 175 |
filtered_df = filtered_df.loc[
|
| 176 |
df[AutoEvalColumn.activation_precision.name].isin(activation_precision_query + ["None"])
|
| 177 |
]
|
|
|
|
| 178 |
|
| 179 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 180 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
@@ -191,6 +196,7 @@ leaderboard_df = filter_models(
|
|
| 191 |
weight_precision_query=[i.value.name for i in Precision],
|
| 192 |
activation_precision_query=[i.value.name for i in Precision],
|
| 193 |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs
|
|
|
|
| 194 |
)
|
| 195 |
|
| 196 |
demo = gr.Blocks(css=custom_css)
|
|
@@ -227,7 +233,7 @@ with demo:
|
|
| 227 |
with gr.Row():
|
| 228 |
hide_models = gr.CheckboxGroup(
|
| 229 |
label="Hide models",
|
| 230 |
-
choices=["Private or deleted", "Contains a merge/moerge", "Flagged", "MoE"],
|
| 231 |
value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
|
| 232 |
interactive=True,
|
| 233 |
)
|
|
@@ -261,6 +267,13 @@ with demo:
|
|
| 261 |
interactive=True,
|
| 262 |
elem_id="filter-columns-size",
|
| 263 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
leaderboard_table = gr.components.Dataframe(
|
| 266 |
value=leaderboard_df[
|
|
@@ -293,6 +306,7 @@ with demo:
|
|
| 293 |
filter_columns_activation_precision,
|
| 294 |
filter_columns_size,
|
| 295 |
hide_models,
|
|
|
|
| 296 |
search_bar,
|
| 297 |
],
|
| 298 |
leaderboard_table,
|
|
@@ -310,6 +324,7 @@ with demo:
|
|
| 310 |
filter_columns_activation_precision,
|
| 311 |
filter_columns_size,
|
| 312 |
hide_models,
|
|
|
|
| 313 |
search_bar,
|
| 314 |
],
|
| 315 |
leaderboard_table,
|
|
@@ -324,6 +339,7 @@ with demo:
|
|
| 324 |
filter_columns_activation_precision,
|
| 325 |
filter_columns_size,
|
| 326 |
hide_models,
|
|
|
|
| 327 |
]:
|
| 328 |
selector.change(
|
| 329 |
update_table,
|
|
@@ -335,6 +351,7 @@ with demo:
|
|
| 335 |
filter_columns_activation_precision,
|
| 336 |
filter_columns_size,
|
| 337 |
hide_models,
|
|
|
|
| 338 |
search_bar,
|
| 339 |
],
|
| 340 |
leaderboard_table,
|
|
@@ -374,4 +391,4 @@ scheduler = BackgroundScheduler()
|
|
| 374 |
scheduler.add_job(restart_space, "interval", seconds=1800) # restarted every 3h
|
| 375 |
scheduler.start()
|
| 376 |
|
| 377 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
+
# from gradio_space_ci import enable_space_ci
|
| 7 |
|
| 8 |
from src.display.about import (
|
| 9 |
INTRODUCTION_TEXT,
|
|
|
|
| 25 |
fields,
|
| 26 |
WeightType,
|
| 27 |
Precision,
|
| 28 |
+
Format
|
| 29 |
)
|
| 30 |
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, REPO_ID, HF_TOKEN
|
| 31 |
from src.populate import get_leaderboard_df
|
|
|
|
| 85 |
activation_precision_query: str,
|
| 86 |
size_query: list,
|
| 87 |
hide_models: list,
|
| 88 |
+
format_query: list,
|
| 89 |
query: str,
|
| 90 |
):
|
| 91 |
filtered_df = filter_models(
|
|
|
|
| 95 |
weight_precision_query=weight_precision_query,
|
| 96 |
activation_precision_query=activation_precision_query,
|
| 97 |
hide_models=hide_models,
|
| 98 |
+
format_query=format_query,
|
| 99 |
)
|
| 100 |
filtered_df = filter_queries(query, filtered_df)
|
| 101 |
df = select_columns(filtered_df, columns)
|
|
|
|
| 156 |
weight_precision_query: list,
|
| 157 |
activation_precision_query: list,
|
| 158 |
hide_models: list,
|
| 159 |
+
format_query: list,
|
| 160 |
) -> pd.DataFrame:
|
| 161 |
# Show all models
|
| 162 |
if "Private or deleted" in hide_models:
|
|
|
|
| 179 |
filtered_df = filtered_df.loc[
|
| 180 |
df[AutoEvalColumn.activation_precision.name].isin(activation_precision_query + ["None"])
|
| 181 |
]
|
| 182 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.format.name].isin(format_query)]
|
| 183 |
|
| 184 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
| 185 |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
|
|
|
| 196 |
weight_precision_query=[i.value.name for i in Precision],
|
| 197 |
activation_precision_query=[i.value.name for i in Precision],
|
| 198 |
hide_models=["Private or deleted", "Contains a merge/moerge", "Flagged"], # Deleted, merges, flagged, MoEs
|
| 199 |
+
format_query=[i.value.name for i in Format],
|
| 200 |
)
|
| 201 |
|
| 202 |
demo = gr.Blocks(css=custom_css)
|
|
|
|
| 233 |
with gr.Row():
|
| 234 |
hide_models = gr.CheckboxGroup(
|
| 235 |
label="Hide models",
|
| 236 |
+
choices=["Private or deleted", "Contains a merge/moerge", "Flagged"], #, "MoE"],
|
| 237 |
value=["Private or deleted", "Contains a merge/moerge", "Flagged"],
|
| 238 |
interactive=True,
|
| 239 |
)
|
|
|
|
| 267 |
interactive=True,
|
| 268 |
elem_id="filter-columns-size",
|
| 269 |
)
|
| 270 |
+
filter_format = gr.CheckboxGroup(
|
| 271 |
+
label="Format",
|
| 272 |
+
choices=[i.value.name for i in Format],
|
| 273 |
+
value=[i.value.name for i in Format],
|
| 274 |
+
interactive=True,
|
| 275 |
+
elem_id="filter-format",
|
| 276 |
+
)
|
| 277 |
|
| 278 |
leaderboard_table = gr.components.Dataframe(
|
| 279 |
value=leaderboard_df[
|
|
|
|
| 306 |
filter_columns_activation_precision,
|
| 307 |
filter_columns_size,
|
| 308 |
hide_models,
|
| 309 |
+
filter_format,
|
| 310 |
search_bar,
|
| 311 |
],
|
| 312 |
leaderboard_table,
|
|
|
|
| 324 |
filter_columns_activation_precision,
|
| 325 |
filter_columns_size,
|
| 326 |
hide_models,
|
| 327 |
+
filter_format,
|
| 328 |
search_bar,
|
| 329 |
],
|
| 330 |
leaderboard_table,
|
|
|
|
| 339 |
filter_columns_activation_precision,
|
| 340 |
filter_columns_size,
|
| 341 |
hide_models,
|
| 342 |
+
filter_format,
|
| 343 |
]:
|
| 344 |
selector.change(
|
| 345 |
update_table,
|
|
|
|
| 351 |
filter_columns_activation_precision,
|
| 352 |
filter_columns_size,
|
| 353 |
hide_models,
|
| 354 |
+
filter_format,
|
| 355 |
search_bar,
|
| 356 |
],
|
| 357 |
leaderboard_table,
|
|
|
|
| 391 |
scheduler.add_job(restart_space, "interval", seconds=1800) # restarted every 3h
|
| 392 |
scheduler.start()
|
| 393 |
|
| 394 |
+
demo.queue(default_concurrency_limit=40).launch(share=True)
|
src/display/utils.py
CHANGED
|
@@ -66,6 +66,7 @@ auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged",
|
|
| 66 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 67 |
# Dummy column for the search bar (hidden by the custom CSS)
|
| 68 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
|
|
|
| 69 |
|
| 70 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 71 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
@@ -166,7 +167,9 @@ class Precision(Enum):
|
|
| 166 |
float32 = ModelDetails("float32")
|
| 167 |
float16 = ModelDetails("float16")
|
| 168 |
bfloat16 = ModelDetails("bfloat16")
|
|
|
|
| 169 |
int4 = ModelDetails("int4")
|
|
|
|
| 170 |
Unknown = ModelDetails("?")
|
| 171 |
|
| 172 |
def from_str(precision):
|
|
@@ -174,11 +177,25 @@ class Precision(Enum):
|
|
| 174 |
return Precision.float16
|
| 175 |
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 176 |
return Precision.bfloat16
|
|
|
|
|
|
|
| 177 |
if precision in ["int4"]:
|
| 178 |
return Precision.int4
|
|
|
|
|
|
|
| 179 |
if precision in ["torch.float32", "float32"]:
|
| 180 |
return Precision.float32
|
| 181 |
return Precision.Unknown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
|
| 184 |
# Column selection
|
|
|
|
| 66 |
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
|
| 67 |
# Dummy column for the search bar (hidden by the custom CSS)
|
| 68 |
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
|
| 69 |
+
auto_eval_column_dict.append(["format", ColumnContent, ColumnContent("Format", "str", False)])
|
| 70 |
|
| 71 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 72 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
| 167 |
float32 = ModelDetails("float32")
|
| 168 |
float16 = ModelDetails("float16")
|
| 169 |
bfloat16 = ModelDetails("bfloat16")
|
| 170 |
+
int8 = ModelDetails("int8")
|
| 171 |
int4 = ModelDetails("int4")
|
| 172 |
+
float8 = ModelDetails("float8")
|
| 173 |
Unknown = ModelDetails("?")
|
| 174 |
|
| 175 |
def from_str(precision):
|
|
|
|
| 177 |
return Precision.float16
|
| 178 |
if precision in ["torch.bfloat16", "bfloat16"]:
|
| 179 |
return Precision.bfloat16
|
| 180 |
+
if precision in ["int8"]:
|
| 181 |
+
return Precision.int8
|
| 182 |
if precision in ["int4"]:
|
| 183 |
return Precision.int4
|
| 184 |
+
if precision in ["float8", "fp8"]:
|
| 185 |
+
return Precision.float8
|
| 186 |
if precision in ["torch.float32", "float32"]:
|
| 187 |
return Precision.float32
|
| 188 |
return Precision.Unknown
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class Format(Enum):
|
| 192 |
+
FakeQuant = ModelDetails("FAKE_QUANT")
|
| 193 |
+
Unknown = ModelDetails("None")
|
| 194 |
+
|
| 195 |
+
def from_str(format):
|
| 196 |
+
if format in ["FAKE_QUANT"]:
|
| 197 |
+
return Format.FakeQuant
|
| 198 |
+
return Format.Unknown
|
| 199 |
|
| 200 |
|
| 201 |
# Column selection
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -36,6 +36,7 @@ class EvalResult:
|
|
| 36 |
flagged: bool = False
|
| 37 |
status: str = "FINISHED"
|
| 38 |
tags: list = None
|
|
|
|
| 39 |
|
| 40 |
@classmethod
|
| 41 |
def init_from_json_file(self, json_filepath):
|
|
@@ -61,6 +62,8 @@ class EvalResult:
|
|
| 61 |
weight_precision = Precision.from_str(config.get("weight_precision"))
|
| 62 |
activation_precision = Precision.from_str(config.get("activation_precision"))
|
| 63 |
|
|
|
|
|
|
|
| 64 |
# Get model and org
|
| 65 |
org_and_model = config.get("model")
|
| 66 |
org_and_model = org_and_model.split("/", 1)
|
|
@@ -78,25 +81,29 @@ class EvalResult:
|
|
| 78 |
# Extract results available in this file (some results are split in several files)
|
| 79 |
results = {}
|
| 80 |
for task in Tasks:
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
if
|
| 86 |
-
results[task.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
continue
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
|
| 94 |
-
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 95 |
continue
|
| 96 |
|
| 97 |
-
mean_acc = np.mean(accs) * 100.0
|
| 98 |
-
results[task.benchmark] = mean_acc
|
| 99 |
-
|
| 100 |
return self(
|
| 101 |
eval_name=result_key,
|
| 102 |
full_model=full_model,
|
|
@@ -112,6 +119,7 @@ class EvalResult:
|
|
| 112 |
date=date,
|
| 113 |
architecture=architecture,
|
| 114 |
tags=tags,
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
# def update_with_request_file(self, requests_path):
|
|
@@ -160,6 +168,7 @@ class EvalResult:
|
|
| 160 |
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
| 161 |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
| 162 |
AutoEvalColumn.flagged.name: self.flagged,
|
|
|
|
| 163 |
}
|
| 164 |
|
| 165 |
for task in Tasks:
|
|
|
|
| 36 |
flagged: bool = False
|
| 37 |
status: str = "FINISHED"
|
| 38 |
tags: list = None
|
| 39 |
+
format: str = None
|
| 40 |
|
| 41 |
@classmethod
|
| 42 |
def init_from_json_file(self, json_filepath):
|
|
|
|
| 62 |
weight_precision = Precision.from_str(config.get("weight_precision"))
|
| 63 |
activation_precision = Precision.from_str(config.get("activation_precision"))
|
| 64 |
|
| 65 |
+
format = config.get("format", "None")
|
| 66 |
+
|
| 67 |
# Get model and org
|
| 68 |
org_and_model = config.get("model")
|
| 69 |
org_and_model = org_and_model.split("/", 1)
|
|
|
|
| 81 |
# Extract results available in this file (some results are split in several files)
|
| 82 |
results = {}
|
| 83 |
for task in Tasks:
|
| 84 |
+
try:
|
| 85 |
+
task = task.value
|
| 86 |
+
# We skip old mmlu entries
|
| 87 |
+
# Some truthfulQA values are NaNs
|
| 88 |
+
if task.benchmark == "truthfulqa_mc2" and "truthfulqa_mc2|0" in data["results"]:
|
| 89 |
+
if math.isnan(float(data["results"]["truthfulqa_mc2|0"][task.metric])):
|
| 90 |
+
results[task.benchmark] = 0.0
|
| 91 |
+
continue
|
| 92 |
+
|
| 93 |
+
# We average all scores of a given metric (mostly for mmlu)
|
| 94 |
+
if task.benchmark == "mmlu":
|
| 95 |
+
accs = np.array([data["results"].get(task.benchmark, {}).get(task.metric, None)])
|
| 96 |
+
else:
|
| 97 |
+
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark in k])
|
| 98 |
+
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 99 |
continue
|
| 100 |
|
| 101 |
+
mean_acc = np.mean(accs) * 100.0
|
| 102 |
+
results[task.benchmark] = mean_acc
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(e)
|
|
|
|
|
|
|
| 105 |
continue
|
| 106 |
|
|
|
|
|
|
|
|
|
|
| 107 |
return self(
|
| 108 |
eval_name=result_key,
|
| 109 |
full_model=full_model,
|
|
|
|
| 119 |
date=date,
|
| 120 |
architecture=architecture,
|
| 121 |
tags=tags,
|
| 122 |
+
format=format,
|
| 123 |
)
|
| 124 |
|
| 125 |
# def update_with_request_file(self, requests_path):
|
|
|
|
| 168 |
AutoEvalColumn.merged.name: "merge" in self.tags if self.tags else False,
|
| 169 |
AutoEvalColumn.moe.name: ("moe" in self.tags if self.tags else False) or "moe" in self.full_model.lower(),
|
| 170 |
AutoEvalColumn.flagged.name: self.flagged,
|
| 171 |
+
AutoEvalColumn.format.name: self.format,
|
| 172 |
}
|
| 173 |
|
| 174 |
for task in Tasks:
|