Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| import os | |
| # Constants | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| DEFAULT_IMAGE_SIZE = 1024 | |
| # Model setup | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| pipe = DiffusionPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-dev", | |
| torch_dtype=dtype, | |
| token=huggingface_token | |
| ).to(device) | |
| def generate_image(prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(42) | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=guidance_scale | |
| ).images[0] | |
| return image, seed | |
| css = """ | |
| body { | |
| background-color: #f4faff; | |
| color: #005662; | |
| font-family: 'Poppins', sans-serif; | |
| } | |
| .container { | |
| margin: 0 auto; | |
| max-width: 900px; | |
| padding: 20px; | |
| } | |
| .gr-button { | |
| background-color: #0288d1; | |
| color: white; | |
| border-radius: 8px; | |
| transition: background-color 0.3s ease; | |
| } | |
| .gr-button:hover { | |
| background-color: #0277bd; | |
| } | |
| .gr-box { | |
| border-radius: 12px; | |
| border: 1px solid #eeeeee; | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo: | |
| gr.Markdown(""" | |
| # FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer | |
| Enter a text prompt below to generate an image. Click 'Generate' to create your image. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| placeholder="Enter your prompt here", | |
| lines=3 | |
| ) | |
| with gr.Column(scale=1): | |
| generate_button = gr.Button("Generate", variant="primary") | |
| result = gr.Image(label="Generated Image", type="pil") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE) | |
| height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_IMAGE_SIZE) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5) | |
| num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28) | |
| gr.Examples( | |
| examples=[ | |
| "a galaxy swirling with vibrant blue and purple hues", | |
| "a futuristic cityscape under a dark sky", | |
| "a serene forest with a magical glowing tree", | |
| "a portrait of a smiling woman with a colorful floral crown", | |
| "a fantastical creature with the body of a dragon and the wings of a butterfly", | |
| ], | |
| inputs=prompt, | |
| outputs=[result, seed], | |
| fn=generate_image, | |
| cache_examples=True, | |
| ) | |
| generate_button.click( | |
| fn=generate_image, | |
| inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.launch(share=True) |