Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler | |
| from PIL import Image | |
| import io | |
| import os | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Set your Hugging Face API token | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| # Load the diffusion pipeline with the Hugging Face API token | |
| pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| guidance_scale=guidance_scale | |
| ).images[0] | |
| return image, seed | |
| def download_image(image, file_format): | |
| img_byte_arr = io.BytesIO() | |
| image.save(img_byte_arr, format=file_format) | |
| img_byte_arr = img_byte_arr.getvalue() | |
| return img_byte_arr | |
| examples = [ | |
| "a galaxy swirling with vibrant blue and purple hues", | |
| "a futuristic cityscape under a dark sky", | |
| "a serene forest with a magical glowing tree", | |
| "a futuristic cityscape with sleek skyscrapers and flying cars", | |
| "a portrait of a smiling woman with a colorful floral crown", | |
| "a fantastical creature with the body of a dragon and the wings of a butterfly", | |
| ] | |
| css = """ | |
| body { | |
| background-color: #f4faff; | |
| color: #005662; | |
| font-family: 'Poppins', sans-serif; | |
| } | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 100%; | |
| padding: 20px; | |
| } | |
| .gr-button { | |
| background-color: #0288d1; | |
| color: white; | |
| border-radius: 8px; | |
| transition: background-color 0.3s ease; | |
| } | |
| .gr-button:hover { | |
| background-color: #0277bd; | |
| } | |
| .gr-examples-card { | |
| border: 1px solid #eeeeee; | |
| border-radius: 12px; | |
| padding: 16px; | |
| margin-bottom: 12px; | |
| } | |
| .gr-examples-card:hover { | |
| background-color: #f4faf2; | |
| border-color: #0277bd; | |
| color: #005662; | |
| } | |
| .gr-progress-bar, .gr-progress-bar-fill { | |
| background-color: #0288d1 !important; | |
| } | |
| .gr-slider, .gr-slider-track { | |
| background-color: #0288d1 !important; | |
| } | |
| .gr-slider-thumb { | |
| background-color: #005662 !important; | |
| } | |
| .gr-text-input, .gr-image { | |
| width: 100%; | |
| box-sizing: border-box; | |
| margin-bottom: 10px; | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer | |
| <a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;"> | |
| <div class="gr-examples-card"> | |
| <h3>View Model Details</h3> | |
| <p>Explore more about this model on Hugging Face.</p> | |
| </div> | |
| </a> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| placeholder="Enter your prompt here", | |
| lines=2 | |
| ) | |
| with gr.Column(scale=1): | |
| generate_button = gr.Button("Generate", variant="primary") | |
| result = gr.Image(label="Generated Image", type="pil") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=15, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=28, | |
| ) | |
| download_format = gr.Radio( | |
| label="Download Format", | |
| choices=["PNG", "JPEG", "SVG", "WEBP"], | |
| value="PNG", | |
| type="value", | |
| ) | |
| download_button = gr.Button("Download Image") | |
| download_button.click( | |
| fn=download_image, | |
| inputs=[result, download_format], | |
| outputs=gr.File(label="Download"), | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=infer, | |
| inputs=[prompt], | |
| outputs=[result, seed], | |
| cache_examples="lazy" | |
| ) | |
| gr.on( | |
| triggers=[generate_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
| outputs=[result, seed] | |
| ) | |
| demo.load( | |
| fn=lambda: None, | |
| inputs=None, | |
| outputs=None | |
| ) | |
| demo.launch(share=True) |