Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,30 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
import torch
|
| 5 |
-
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
| 6 |
import os
|
| 7 |
|
| 8 |
-
# Constants
|
| 9 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 10 |
-
MAX_IMAGE_SIZE = 2048
|
| 11 |
-
DEFAULT_IMAGE_SIZE = 1024
|
| 12 |
-
|
| 13 |
-
# Model setup
|
| 14 |
dtype = torch.bfloat16
|
| 15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 16 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
torch_dtype=dtype,
|
| 21 |
-
token=huggingface_token
|
| 22 |
-
).to(device)
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if randomize_seed:
|
| 26 |
seed = random.randint(0, MAX_SEED)
|
| 27 |
-
generator = torch.Generator().manual_seed(
|
| 28 |
image = pipe(
|
| 29 |
prompt=prompt,
|
| 30 |
width=width,
|
|
@@ -35,15 +35,30 @@ def generate_image(prompt, seed, randomize_seed, width, height, guidance_scale,
|
|
| 35 |
).images[0]
|
| 36 |
return image, seed
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
css = """
|
| 39 |
body {
|
| 40 |
background-color: #f4faff;
|
| 41 |
color: #005662;
|
| 42 |
font-family: 'Poppins', sans-serif;
|
| 43 |
}
|
| 44 |
-
|
| 45 |
margin: 0 auto;
|
| 46 |
-
max-width:
|
| 47 |
padding: 20px;
|
| 48 |
}
|
| 49 |
.gr-button {
|
|
@@ -55,62 +70,128 @@ body {
|
|
| 55 |
.gr-button:hover {
|
| 56 |
background-color: #0277bd;
|
| 57 |
}
|
| 58 |
-
.gr-
|
| 59 |
-
border-radius: 12px;
|
| 60 |
border: 1px solid #eeeeee;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
}
|
| 62 |
"""
|
| 63 |
|
| 64 |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
|
| 65 |
-
gr.Markdown("""
|
| 66 |
-
# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
|
| 67 |
-
|
| 68 |
-
Enter a text prompt below to generate an image. Click 'Generate' to create your image.
|
| 69 |
-
""")
|
| 70 |
-
|
| 71 |
-
with gr.Row():
|
| 72 |
-
with gr.Column(scale=4):
|
| 73 |
-
prompt = gr.Text(
|
| 74 |
-
label="Prompt",
|
| 75 |
-
placeholder="Enter your prompt here",
|
| 76 |
-
lines=3
|
| 77 |
-
)
|
| 78 |
-
with gr.Column(scale=1):
|
| 79 |
-
generate_button = gr.Button("Generate", variant="primary")
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 84 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 85 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
with gr.Row():
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
|
| 92 |
-
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5)
|
| 93 |
-
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=50, step=1, value=28)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 112 |
outputs=[result, seed]
|
| 113 |
)
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
import spaces
|
| 5 |
import torch
|
| 6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import io
|
| 9 |
import os
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
dtype = torch.bfloat16
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
+
|
| 14 |
+
# Set your Hugging Face API token
|
| 15 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 16 |
|
| 17 |
+
# Load the diffusion pipeline with the Hugging Face API token
|
| 18 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, token=huggingface_token).to(device)
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
+
MAX_IMAGE_SIZE = 2048
|
| 22 |
+
|
| 23 |
+
@spaces.GPU(duration=200)
|
| 24 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 25 |
if randomize_seed:
|
| 26 |
seed = random.randint(0, MAX_SEED)
|
| 27 |
+
generator = torch.Generator().manual_seed(seed)
|
| 28 |
image = pipe(
|
| 29 |
prompt=prompt,
|
| 30 |
width=width,
|
|
|
|
| 35 |
).images[0]
|
| 36 |
return image, seed
|
| 37 |
|
| 38 |
+
def download_image(image, file_format):
|
| 39 |
+
img_byte_arr = io.BytesIO()
|
| 40 |
+
image.save(img_byte_arr, format=file_format)
|
| 41 |
+
img_byte_arr = img_byte_arr.getvalue()
|
| 42 |
+
return img_byte_arr
|
| 43 |
+
|
| 44 |
+
examples = [
|
| 45 |
+
"a galaxy swirling with vibrant blue and purple hues",
|
| 46 |
+
"a futuristic cityscape under a dark sky",
|
| 47 |
+
"a serene forest with a magical glowing tree",
|
| 48 |
+
"a futuristic cityscape with sleek skyscrapers and flying cars",
|
| 49 |
+
"a portrait of a smiling woman with a colorful floral crown",
|
| 50 |
+
"a fantastical creature with the body of a dragon and the wings of a butterfly",
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
css = """
|
| 54 |
body {
|
| 55 |
background-color: #f4faff;
|
| 56 |
color: #005662;
|
| 57 |
font-family: 'Poppins', sans-serif;
|
| 58 |
}
|
| 59 |
+
#col-container {
|
| 60 |
margin: 0 auto;
|
| 61 |
+
max-width: 100%;
|
| 62 |
padding: 20px;
|
| 63 |
}
|
| 64 |
.gr-button {
|
|
|
|
| 70 |
.gr-button:hover {
|
| 71 |
background-color: #0277bd;
|
| 72 |
}
|
| 73 |
+
.gr-examples-card {
|
|
|
|
| 74 |
border: 1px solid #eeeeee;
|
| 75 |
+
border-radius: 12px;
|
| 76 |
+
padding: 16px;
|
| 77 |
+
margin-bottom: 12px;
|
| 78 |
+
}
|
| 79 |
+
.gr-examples-card:hover {
|
| 80 |
+
background-color: #f4faf2;
|
| 81 |
+
border-color: #0277bd;
|
| 82 |
+
color: #005662;
|
| 83 |
+
}
|
| 84 |
+
.gr-progress-bar, .gr-progress-bar-fill {
|
| 85 |
+
background-color: #0288d1 !important;
|
| 86 |
+
}
|
| 87 |
+
.gr-slider, .gr-slider-track {
|
| 88 |
+
background-color: #0288d1 !important;
|
| 89 |
+
}
|
| 90 |
+
.gr-slider-thumb {
|
| 91 |
+
background-color: #005662 !important;
|
| 92 |
+
}
|
| 93 |
+
.gr-text-input, .gr-image {
|
| 94 |
+
width: 100%;
|
| 95 |
+
box-sizing: border-box;
|
| 96 |
+
margin-bottom: 10px;
|
| 97 |
}
|
| 98 |
"""
|
| 99 |
|
| 100 |
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray")) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
with gr.Column(elem_id="col-container"):
|
| 103 |
+
gr.Markdown(f"""# FLUX.1 [dev] | A Text-To-Image Rectified Flow 12B Transformer
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
<a href="https://huggingface.co/black-forest-labs/FLUX.1-dev" style="text-decoration:none;">
|
| 106 |
+
<div class="gr-examples-card">
|
| 107 |
+
<h3>View Model Details</h3>
|
| 108 |
+
<p>Explore more about this model on Hugging Face.</p>
|
| 109 |
+
</div>
|
| 110 |
+
</a>
|
| 111 |
+
""")
|
| 112 |
+
|
| 113 |
with gr.Row():
|
| 114 |
+
with gr.Column(scale=4):
|
| 115 |
+
prompt = gr.Text(
|
| 116 |
+
label="Prompt",
|
| 117 |
+
placeholder="Enter your prompt here",
|
| 118 |
+
lines=2
|
| 119 |
+
)
|
| 120 |
+
with gr.Column(scale=1):
|
| 121 |
+
generate_button = gr.Button("Generate", variant="primary")
|
| 122 |
|
| 123 |
+
result = gr.Image(label="Generated Image", type="pil")
|
|
|
|
|
|
|
| 124 |
|
| 125 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 126 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
| 127 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
width = gr.Slider(
|
| 131 |
+
label="Width",
|
| 132 |
+
minimum=256,
|
| 133 |
+
maximum=MAX_IMAGE_SIZE,
|
| 134 |
+
step=32,
|
| 135 |
+
value=1024,
|
| 136 |
+
)
|
| 137 |
+
height = gr.Slider(
|
| 138 |
+
label="Height",
|
| 139 |
+
minimum=256,
|
| 140 |
+
maximum=MAX_IMAGE_SIZE,
|
| 141 |
+
step=32,
|
| 142 |
+
value=1024,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
with gr.Row():
|
| 146 |
+
guidance_scale = gr.Slider(
|
| 147 |
+
label="Guidance Scale",
|
| 148 |
+
minimum=1,
|
| 149 |
+
maximum=15,
|
| 150 |
+
step=0.1,
|
| 151 |
+
value=3.5,
|
| 152 |
+
)
|
| 153 |
+
num_inference_steps = gr.Slider(
|
| 154 |
+
label="Number of inference steps",
|
| 155 |
+
minimum=1,
|
| 156 |
+
maximum=50,
|
| 157 |
+
step=1,
|
| 158 |
+
value=28,
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
download_format = gr.Radio(
|
| 162 |
+
label="Download Format",
|
| 163 |
+
choices=["PNG", "JPEG", "SVG", "WEBP"],
|
| 164 |
+
value="PNG",
|
| 165 |
+
type="value",
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
download_button = gr.Button("Download Image")
|
| 169 |
+
|
| 170 |
+
download_button.click(
|
| 171 |
+
fn=download_image,
|
| 172 |
+
inputs=[result, download_format],
|
| 173 |
+
outputs=gr.File(label="Download"),
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
gr.Examples(
|
| 177 |
+
examples=examples,
|
| 178 |
+
fn=infer,
|
| 179 |
+
inputs=[prompt],
|
| 180 |
+
outputs=[result, seed],
|
| 181 |
+
cache_examples="lazy"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
gr.on(
|
| 185 |
+
triggers=[run_button.click, prompt.submit],
|
| 186 |
+
fn=infer,
|
| 187 |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 188 |
outputs=[result, seed]
|
| 189 |
)
|
| 190 |
|
| 191 |
+
demo.load(
|
| 192 |
+
fn=lambda: None,
|
| 193 |
+
inputs=None,
|
| 194 |
+
outputs=None
|
| 195 |
+
)
|
| 196 |
|
| 197 |
demo.launch(share=True)
|