Spaces:
Runtime error
Runtime error
| from typing import Optional | |
| import spaces | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| import io | |
| import base64 | |
| from util.utils import ( | |
| check_ocr_box, | |
| get_yolo_model, | |
| get_caption_model_processor, | |
| get_som_labeled_img, | |
| ) | |
| from huggingface_hub import snapshot_download | |
| # Define repository and local directory | |
| repo_id = "microsoft/OmniParser-v2.0" # HF repo | |
| local_dir = "weights" # Target local directory | |
| # Download the entire repository | |
| snapshot_download(repo_id=repo_id, local_dir=local_dir) | |
| print(f"Repository downloaded to: {local_dir}") | |
| yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt") | |
| caption_model_processor = get_caption_model_processor( | |
| model_name="florence2", model_name_or_path="weights/icon_caption" | |
| ) | |
| # caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2") | |
| MARKDOWN = """ | |
| # OmniParser V2 for Pure Vision Based General GUI Agent 🔥 | |
| <div> | |
| <a href="https://arxiv.org/pdf/2408.00203"> | |
| <img src="https://img.shields.io/badge/arXiv-2408.00203-b31b1b.svg" alt="Arxiv" style="display:inline-block;"> | |
| </a> | |
| </div> | |
| OmniParser is a screen parsing tool to convert general GUI screen to structured elements. | |
| """ | |
| DEVICE = torch.device("cuda") | |
| # @torch.autocast(device_type="cuda", dtype=torch.bfloat16) | |
| def process( | |
| image_input, box_threshold, iou_threshold, use_paddleocr, imgsz | |
| ) -> Optional[Image.Image]: | |
| # image_save_path = 'imgs/saved_image_demo.png' | |
| # image_input.save(image_save_path) | |
| # image = Image.open(image_save_path) | |
| box_overlay_ratio = image_input.size[0] / 3200 | |
| draw_bbox_config = { | |
| "text_scale": 0.8 * box_overlay_ratio, | |
| "text_thickness": max(int(2 * box_overlay_ratio), 1), | |
| "text_padding": max(int(3 * box_overlay_ratio), 1), | |
| "thickness": max(int(3 * box_overlay_ratio), 1), | |
| } | |
| # import pdb; pdb.set_trace() | |
| ocr_bbox_rslt, is_goal_filtered = check_ocr_box( | |
| image_input, | |
| display_img=False, | |
| output_bb_format="xyxy", | |
| goal_filtering=None, | |
| easyocr_args={"paragraph": False, "text_threshold": 0.9}, | |
| use_paddleocr=use_paddleocr, | |
| ) | |
| text, ocr_bbox = ocr_bbox_rslt | |
| dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img( | |
| image_input, | |
| yolo_model, | |
| BOX_TRESHOLD=box_threshold, | |
| output_coord_in_ratio=True, | |
| ocr_bbox=ocr_bbox, | |
| draw_bbox_config=draw_bbox_config, | |
| caption_model_processor=caption_model_processor, | |
| ocr_text=text, | |
| iou_threshold=iou_threshold, | |
| imgsz=imgsz, | |
| ) | |
| image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) | |
| print("finish processing") | |
| parsed_content_list = "\n".join( | |
| [f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)] | |
| ) | |
| # parsed_content_list = str(parsed_content_list) | |
| return image, str(parsed_content_list) | |
| with gr.Blocks() as demo: | |
| gr.Markdown(MARKDOWN) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image_input_component = gr.Image(type="pil", label="Upload image") | |
| # set the threshold for removing the bounding boxes with low confidence, default is 0.05 | |
| box_threshold_component = gr.Slider( | |
| label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05 | |
| ) | |
| # set the threshold for removing the bounding boxes with large overlap, default is 0.1 | |
| iou_threshold_component = gr.Slider( | |
| label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1 | |
| ) | |
| use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True) | |
| imgsz_component = gr.Slider( | |
| label="Icon Detect Image Size", | |
| minimum=640, | |
| maximum=1920, | |
| step=32, | |
| value=640, | |
| ) | |
| submit_button_component = gr.Button(value="Submit", variant="primary") | |
| with gr.Column(): | |
| image_output_component = gr.Image(type="pil", label="Image Output") | |
| text_output_component = gr.Textbox( | |
| label="Parsed screen elements", placeholder="Text Output" | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["assets/Programme_Officiel.png", 0.05, 0.1, True, 640], | |
| ], | |
| inputs=[ | |
| image_input_component, | |
| box_threshold_component, | |
| iou_threshold_component, | |
| use_paddleocr_component, | |
| imgsz_component, | |
| ], | |
| outputs=[image_output_component, text_output_component], | |
| fn=process, | |
| cache_examples=True, | |
| ) | |
| submit_button_component.click( | |
| fn=process, | |
| inputs=[ | |
| image_input_component, | |
| box_threshold_component, | |
| iou_threshold_component, | |
| use_paddleocr_component, | |
| imgsz_component, | |
| ], | |
| outputs=[image_output_component, text_output_component], | |
| ) | |
| # demo.launch(debug=False, show_error=True, share=True) | |
| # demo.launch(share=True, server_port=7861, server_name='0.0.0.0') | |
| demo.queue().launch(share=False) | |