Spaces:
Runtime error
Runtime error
fix linting
Browse files
app.py
CHANGED
|
@@ -1,16 +1,18 @@
|
|
| 1 |
from typing import Optional
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
| 4 |
-
import numpy as np
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
|
| 9 |
|
| 10 |
-
import base64
|
| 11 |
-
from util.utils import
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
from huggingface_hub import snapshot_download
|
| 16 |
|
|
@@ -24,8 +26,10 @@ snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
|
| 24 |
print(f"Repository downloaded to: {local_dir}")
|
| 25 |
|
| 26 |
|
| 27 |
-
yolo_model = get_yolo_model(model_path=
|
| 28 |
-
caption_model_processor = get_caption_model_processor(
|
|
|
|
|
|
|
| 29 |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
| 30 |
|
| 31 |
MARKDOWN = """
|
|
@@ -39,61 +43,84 @@ MARKDOWN = """
|
|
| 39 |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
| 40 |
"""
|
| 41 |
|
| 42 |
-
DEVICE = torch.device(
|
|
|
|
| 43 |
|
| 44 |
@spaces.GPU
|
| 45 |
@torch.inference_mode()
|
| 46 |
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 47 |
def process(
|
| 48 |
-
image_input,
|
| 49 |
-
box_threshold,
|
| 50 |
-
iou_threshold,
|
| 51 |
-
use_paddleocr,
|
| 52 |
-
imgsz
|
| 53 |
) -> Optional[Image.Image]:
|
| 54 |
-
|
| 55 |
# image_save_path = 'imgs/saved_image_demo.png'
|
| 56 |
# image_input.save(image_save_path)
|
| 57 |
# image = Image.open(image_save_path)
|
| 58 |
box_overlay_ratio = image_input.size[0] / 3200
|
| 59 |
draw_bbox_config = {
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
}
|
| 65 |
# import pdb; pdb.set_trace()
|
| 66 |
|
| 67 |
-
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
text, ocr_bbox = ocr_bbox_rslt
|
| 69 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
| 71 |
-
print(
|
| 72 |
-
parsed_content_list =
|
|
|
|
|
|
|
| 73 |
# parsed_content_list = str(parsed_content_list)
|
| 74 |
return image, str(parsed_content_list)
|
| 75 |
|
|
|
|
| 76 |
with gr.Blocks() as demo:
|
| 77 |
gr.Markdown(MARKDOWN)
|
| 78 |
with gr.Row():
|
| 79 |
with gr.Column():
|
| 80 |
-
image_input_component = gr.Image(
|
| 81 |
-
type='pil', label='Upload image')
|
| 82 |
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
| 83 |
box_threshold_component = gr.Slider(
|
| 84 |
-
label=
|
|
|
|
| 85 |
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
| 86 |
iou_threshold_component = gr.Slider(
|
| 87 |
-
label=
|
| 88 |
-
|
| 89 |
-
|
| 90 |
imgsz_component = gr.Slider(
|
| 91 |
-
label=
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
with gr.Column():
|
| 95 |
-
image_output_component = gr.Image(type=
|
| 96 |
-
text_output_component = gr.Textbox(
|
|
|
|
|
|
|
| 97 |
|
| 98 |
submit_button_component.click(
|
| 99 |
fn=process,
|
|
@@ -102,11 +129,11 @@ with gr.Blocks() as demo:
|
|
| 102 |
box_threshold_component,
|
| 103 |
iou_threshold_component,
|
| 104 |
use_paddleocr_component,
|
| 105 |
-
imgsz_component
|
| 106 |
],
|
| 107 |
-
outputs=[image_output_component, text_output_component]
|
| 108 |
)
|
| 109 |
|
| 110 |
# demo.launch(debug=False, show_error=True, share=True)
|
| 111 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
| 112 |
-
demo.queue().launch(share=False)
|
|
|
|
| 1 |
from typing import Optional
|
| 2 |
import spaces
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
| 6 |
import io
|
| 7 |
|
| 8 |
|
| 9 |
+
import base64
|
| 10 |
+
from util.utils import (
|
| 11 |
+
check_ocr_box,
|
| 12 |
+
get_yolo_model,
|
| 13 |
+
get_caption_model_processor,
|
| 14 |
+
get_som_labeled_img,
|
| 15 |
+
)
|
| 16 |
|
| 17 |
from huggingface_hub import snapshot_download
|
| 18 |
|
|
|
|
| 26 |
print(f"Repository downloaded to: {local_dir}")
|
| 27 |
|
| 28 |
|
| 29 |
+
yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt")
|
| 30 |
+
caption_model_processor = get_caption_model_processor(
|
| 31 |
+
model_name="florence2", model_name_or_path="weights/icon_caption"
|
| 32 |
+
)
|
| 33 |
# caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2")
|
| 34 |
|
| 35 |
MARKDOWN = """
|
|
|
|
| 43 |
OmniParser is a screen parsing tool to convert general GUI screen to structured elements.
|
| 44 |
"""
|
| 45 |
|
| 46 |
+
DEVICE = torch.device("cuda")
|
| 47 |
+
|
| 48 |
|
| 49 |
@spaces.GPU
|
| 50 |
@torch.inference_mode()
|
| 51 |
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
| 52 |
def process(
|
| 53 |
+
image_input, box_threshold, iou_threshold, use_paddleocr, imgsz
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
) -> Optional[Image.Image]:
|
|
|
|
| 55 |
# image_save_path = 'imgs/saved_image_demo.png'
|
| 56 |
# image_input.save(image_save_path)
|
| 57 |
# image = Image.open(image_save_path)
|
| 58 |
box_overlay_ratio = image_input.size[0] / 3200
|
| 59 |
draw_bbox_config = {
|
| 60 |
+
"text_scale": 0.8 * box_overlay_ratio,
|
| 61 |
+
"text_thickness": max(int(2 * box_overlay_ratio), 1),
|
| 62 |
+
"text_padding": max(int(3 * box_overlay_ratio), 1),
|
| 63 |
+
"thickness": max(int(3 * box_overlay_ratio), 1),
|
| 64 |
}
|
| 65 |
# import pdb; pdb.set_trace()
|
| 66 |
|
| 67 |
+
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
|
| 68 |
+
image_input,
|
| 69 |
+
display_img=False,
|
| 70 |
+
output_bb_format="xyxy",
|
| 71 |
+
goal_filtering=None,
|
| 72 |
+
easyocr_args={"paragraph": False, "text_threshold": 0.9},
|
| 73 |
+
use_paddleocr=use_paddleocr,
|
| 74 |
+
)
|
| 75 |
text, ocr_bbox = ocr_bbox_rslt
|
| 76 |
+
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
| 77 |
+
image_input,
|
| 78 |
+
yolo_model,
|
| 79 |
+
BOX_TRESHOLD=box_threshold,
|
| 80 |
+
output_coord_in_ratio=True,
|
| 81 |
+
ocr_bbox=ocr_bbox,
|
| 82 |
+
draw_bbox_config=draw_bbox_config,
|
| 83 |
+
caption_model_processor=caption_model_processor,
|
| 84 |
+
ocr_text=text,
|
| 85 |
+
iou_threshold=iou_threshold,
|
| 86 |
+
imgsz=imgsz,
|
| 87 |
+
)
|
| 88 |
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
| 89 |
+
print("finish processing")
|
| 90 |
+
parsed_content_list = "\n".join(
|
| 91 |
+
[f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)]
|
| 92 |
+
)
|
| 93 |
# parsed_content_list = str(parsed_content_list)
|
| 94 |
return image, str(parsed_content_list)
|
| 95 |
|
| 96 |
+
|
| 97 |
with gr.Blocks() as demo:
|
| 98 |
gr.Markdown(MARKDOWN)
|
| 99 |
with gr.Row():
|
| 100 |
with gr.Column():
|
| 101 |
+
image_input_component = gr.Image(type="pil", label="Upload image")
|
|
|
|
| 102 |
# set the threshold for removing the bounding boxes with low confidence, default is 0.05
|
| 103 |
box_threshold_component = gr.Slider(
|
| 104 |
+
label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05
|
| 105 |
+
)
|
| 106 |
# set the threshold for removing the bounding boxes with large overlap, default is 0.1
|
| 107 |
iou_threshold_component = gr.Slider(
|
| 108 |
+
label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1
|
| 109 |
+
)
|
| 110 |
+
use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True)
|
| 111 |
imgsz_component = gr.Slider(
|
| 112 |
+
label="Icon Detect Image Size",
|
| 113 |
+
minimum=640,
|
| 114 |
+
maximum=1920,
|
| 115 |
+
step=32,
|
| 116 |
+
value=640,
|
| 117 |
+
)
|
| 118 |
+
submit_button_component = gr.Button(value="Submit", variant="primary")
|
| 119 |
with gr.Column():
|
| 120 |
+
image_output_component = gr.Image(type="pil", label="Image Output")
|
| 121 |
+
text_output_component = gr.Textbox(
|
| 122 |
+
label="Parsed screen elements", placeholder="Text Output"
|
| 123 |
+
)
|
| 124 |
|
| 125 |
submit_button_component.click(
|
| 126 |
fn=process,
|
|
|
|
| 129 |
box_threshold_component,
|
| 130 |
iou_threshold_component,
|
| 131 |
use_paddleocr_component,
|
| 132 |
+
imgsz_component,
|
| 133 |
],
|
| 134 |
+
outputs=[image_output_component, text_output_component],
|
| 135 |
)
|
| 136 |
|
| 137 |
# demo.launch(debug=False, show_error=True, share=True)
|
| 138 |
# demo.launch(share=True, server_port=7861, server_name='0.0.0.0')
|
| 139 |
+
demo.queue().launch(share=False)
|