Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,165 +1,53 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
import time
|
| 6 |
-
from functools import lru_cache
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
model = pipeline(
|
| 16 |
-
"text2text-generation",
|
| 17 |
-
model="numind/NuExtract-1.5",
|
| 18 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 19 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else None
|
| 20 |
-
)
|
| 21 |
-
|
| 22 |
-
load_time = round(time.time() - start_time, 2)
|
| 23 |
-
print(f"✅ Model loaded successfully in {load_time}s")
|
| 24 |
-
return model
|
| 25 |
-
except Exception as e:
|
| 26 |
-
print(f"❌ Model loading failed: {str(e)}")
|
| 27 |
-
return None
|
| 28 |
|
| 29 |
-
# 2. Processing Function with Streamed Output
|
| 30 |
def extract_structure(template, text):
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
|
| 36 |
try:
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
return
|
| 41 |
-
|
| 42 |
-
# Processing stages
|
| 43 |
-
stages = [
|
| 44 |
-
("🔍 Initializing model...", 0.5),
|
| 45 |
-
("📖 Parsing document structure...", 1.2),
|
| 46 |
-
("🔄 Matching template fields...", 0.8),
|
| 47 |
-
("✨ Finalizing extraction...", 0.3)
|
| 48 |
-
]
|
| 49 |
-
|
| 50 |
-
for msg, delay in stages:
|
| 51 |
-
yield msg, "", ""
|
| 52 |
-
time.sleep(delay)
|
| 53 |
-
|
| 54 |
-
try:
|
| 55 |
-
# Actual inference
|
| 56 |
-
result = extractor(
|
| 57 |
-
text,
|
| 58 |
-
**template_data,
|
| 59 |
-
max_length=512,
|
| 60 |
-
num_return_sequences=1,
|
| 61 |
-
temperature=0.7
|
| 62 |
-
)[0]['generated_text']
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
padding: 15px;
|
| 69 |
-
background: #f8f9fa;
|
| 70 |
-
border-radius: 8px;
|
| 71 |
-
border-left: 4px solid #4CAF50;
|
| 72 |
-
margin-top: 10px;
|
| 73 |
-
'>
|
| 74 |
-
<h3 style='margin-top:0'>Extracted Data</h3>
|
| 75 |
-
<pre style='white-space: pre-wrap'>{json.dumps(formatted_json, indent=2)}</pre>
|
| 76 |
-
</div>
|
| 77 |
-
"""
|
| 78 |
|
| 79 |
-
|
| 80 |
|
| 81 |
except Exception as e:
|
| 82 |
-
|
| 83 |
-
yield error_msg, "", f"<p style='color:red'>{error_msg}</p>"
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
with gr.Blocks(
|
| 87 |
-
#
|
| 88 |
-
gr.Markdown("""
|
| 89 |
-
<div style='text-align:center'>
|
| 90 |
-
<h1>🧠 NuExtract-1.5</h1>
|
| 91 |
-
<p>Advanced Information Extraction System</p>
|
| 92 |
-
</div>
|
| 93 |
-
""")
|
| 94 |
|
| 95 |
-
# Main layout
|
| 96 |
with gr.Row():
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
gr.
|
| 100 |
-
|
| 101 |
-
label="Extraction Template (JSON)",
|
| 102 |
-
value='{"fields": ["name", "email", "phone"]}',
|
| 103 |
-
lines=5
|
| 104 |
-
)
|
| 105 |
-
text_input = gr.TextArea(
|
| 106 |
-
label="Document Text",
|
| 107 |
-
placeholder="John Smith ([email protected]) called regarding order #12345...",
|
| 108 |
-
lines=12
|
| 109 |
-
)
|
| 110 |
-
gr.Examples(
|
| 111 |
-
examples=[
|
| 112 |
-
[
|
| 113 |
-
'{"fields": ["name", "email"]}',
|
| 114 |
-
"Please contact Dr. Sarah Johnson at [email protected]"
|
| 115 |
-
],
|
| 116 |
-
[
|
| 117 |
-
'{"fields": ["product", "price"]}',
|
| 118 |
-
"The new MacBook Pro costs $1,299 at our store"
|
| 119 |
-
]
|
| 120 |
-
],
|
| 121 |
-
inputs=[template_input, text_input],
|
| 122 |
-
label="Try Examples:"
|
| 123 |
-
)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
gr.
|
| 128 |
-
|
| 129 |
-
label="Status",
|
| 130 |
-
value="🟢 System Ready"
|
| 131 |
-
)
|
| 132 |
-
json_output = gr.JSON(label="Structured Output") # Removed interactive parameter
|
| 133 |
-
html_output = gr.HTML(
|
| 134 |
-
label="Formatted View",
|
| 135 |
-
value="<div style='min-height:200px'></div>"
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
# Controls
|
| 139 |
-
submit_btn = gr.Button("Extract Information", variant="primary")
|
| 140 |
-
clear_btn = gr.Button("Clear")
|
| 141 |
|
| 142 |
-
|
| 143 |
-
submit_btn.click(
|
| 144 |
-
fn=extract_structure,
|
| 145 |
-
inputs=[template_input, text_input],
|
| 146 |
-
outputs=[status, json_output, html_output]
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
clear_btn.click(
|
| 150 |
-
fn=lambda: ["", "", {}, "<div></div>"],
|
| 151 |
-
inputs=[],
|
| 152 |
-
outputs=[template_input, text_input, json_output, html_output]
|
| 153 |
-
)
|
| 154 |
|
| 155 |
-
|
| 156 |
-
if __name__ == "__main__":
|
| 157 |
-
# Initialize model
|
| 158 |
-
extractor = load_model()
|
| 159 |
-
|
| 160 |
-
# Launch app
|
| 161 |
-
demo.launch(
|
| 162 |
-
server_name="0.0.0.0",
|
| 163 |
-
server_port=7860,
|
| 164 |
-
show_error=True
|
| 165 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
import time
|
|
|
|
| 6 |
|
| 7 |
+
# Model Loading
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract-1.5")
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
+
"numind/NuExtract-1.5",
|
| 11 |
+
device_map="auto",
|
| 12 |
+
torch_dtype=torch.float16
|
| 13 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
def extract_structure(template, text):
|
| 16 |
+
prompt = f"""Extract the following fields from the text:
|
| 17 |
+
Template: {template}
|
| 18 |
+
Text: {text}
|
| 19 |
+
Extracted JSON:"""
|
| 20 |
|
| 21 |
try:
|
| 22 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 23 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
| 24 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
# Extract JSON portion
|
| 27 |
+
json_start = result.find("{")
|
| 28 |
+
json_end = result.rfind("}") + 1
|
| 29 |
+
extracted = json.loads(result[json_start:json_end])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
return "✅ Success", extracted, f"<pre>{json.dumps(extracted, indent=2)}</pre>"
|
| 32 |
|
| 33 |
except Exception as e:
|
| 34 |
+
return f"❌ Error: {str(e)}", {}, f"<p style='color:red'>{str(e)}</p>"
|
|
|
|
| 35 |
|
| 36 |
+
# Gradio Interface
|
| 37 |
+
with gr.Blocks() as demo:
|
| 38 |
+
gr.Markdown("# NuExtract-1.5 Structured Data Extractor")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
| 40 |
with gr.Row():
|
| 41 |
+
with gr.Column():
|
| 42 |
+
template = gr.Textbox(label="Template (JSON)", value='{"fields": ["name", "email"]}')
|
| 43 |
+
text = gr.TextArea(label="Input Text")
|
| 44 |
+
btn = gr.Button("Extract")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
with gr.Column():
|
| 47 |
+
status = gr.Textbox(label="Status")
|
| 48 |
+
json_out = gr.JSON(label="Output")
|
| 49 |
+
html_out = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
btn.click(extract_structure, [template, text], [status, json_out, html_out])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|