Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 7,831 Bytes
			
			| 1619d3a 4724b80 f5d3829 1619d3a ed350e2 1619d3a 0d00040 1619d3a f5d3829 1619d3a 0d00040 1619d3a 0d00040 1619d3a d5942bf e1d4031 d5942bf e1d4031 1619d3a d5942bf 1619d3a f5d3829 665492b f5d3829 665492b f5d3829 1619d3a d5942bf 1619d3a d5942bf 1619d3a d5942bf 1619d3a 9a81ce3 0d00040 3151687 9a81ce3 3151687 1619d3a 3151687 1619d3a d5942bf 1619d3a 1e6104e ed350e2 1619d3a | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | import logging
import warnings
import diffusers
import numpy as np
import torch
from diffusers import MarigoldDepthPipeline
warnings.simplefilter(action="ignore", category=FutureWarning)
diffusers.utils.logging.disable_progress_bar()
class MarigoldDepthCompletionPipeline(MarigoldDepthPipeline):
    def __call__(
        self,
        image,
        sparse_depth,
        num_inference_steps=50,
        processing_resolution=0,
        seed=2024,
        lr_scale_shift=0.005,
        lr_latent=0.05,
        override_shift=None,
        override_scale=None,
        dry_run=False,
    ):
        # Resolving variables
        device = self._execution_device
        generator = torch.Generator(device=device).manual_seed(seed)
        if dry_run:
            logging.warning("Dry run mode")
            for i in range(num_inference_steps):
                yield np.array(image)[:, :, 0].astype(float), float(np.log(i + 1))
            return
        # Check inputs.
        if num_inference_steps is None:
            raise ValueError("Invalid num_inference_steps")
        if sparse_depth is not None and (type(sparse_depth) is not np.ndarray or sparse_depth.ndim != 2):
            raise ValueError(
                "Sparse depth should be a 2D numpy ndarray with zeros at missing positions"
            )
        with torch.no_grad():
            # Prepare empty text conditioning
            if self.empty_text_embedding is None:
                prompt = ""
                text_inputs = self.tokenizer(
                    prompt,
                    padding="do_not_pad",
                    max_length=self.tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids.to(device)
                self.empty_text_embedding = self.text_encoder(text_input_ids)[0]  # [1,2,1024]
        # Preprocess input images
        image, padding, original_resolution = self.image_processor.preprocess(
            image,
            processing_resolution=processing_resolution,
            device=device,
            dtype=self.dtype,
        )  # [N,3,PPH,PPW]
        if sparse_depth is not None and sparse_depth.shape != original_resolution:
            raise ValueError(
                f"Sparse depth dimensions ({sparse_depth.shape}) must match that of the image ({image.shape[-2:]})"
            )
        with torch.no_grad():
            # Encode input image into latent space
            image_latent, pred_latent = self.prepare_latents(
                image, None, generator, 1, 1
            )  # [N*E,4,h,w], [N*E,4,h,w]
        del image
        # Preprocess sparse depth
        if sparse_depth is not None:
            sparse_depth = torch.from_numpy(sparse_depth)[None, None].float()
            sparse_depth = sparse_depth.to(device)
            sparse_mask = sparse_depth > 0
            sparse_depth = sparse_depth[sparse_mask]
            sparse_depth_min = sparse_depth.min() if sparse_depth.numel() > 0 else 0
            sparse_depth_max = sparse_depth.max() if sparse_depth.numel() > 0 else 1
        else:
            sparse_depth_min = 0
            sparse_depth_max = 1
        # Set up optimization targets
        pred_latent = torch.nn.Parameter(pred_latent, requires_grad=True)
        if override_scale:
            scale = np.sqrt(override_scale)
            sparse_range = 1.0
        else:
            scale = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
            sparse_range = sparse_depth_max - sparse_depth_min
            if torch.is_tensor(sparse_range):
                sparse_range = sparse_range.item()
        if override_shift:
            shift = np.sqrt(override_shift)
            sparse_lower = 1.0
        else:
            shift = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
            sparse_lower = sparse_depth_min
            if torch.is_tensor(sparse_range):
                sparse_lower = sparse_lower.item()
        def affine_to_metric(depth):
            return (scale**2) * sparse_range * depth + (shift**2) * sparse_lower
        def latent_to_metric(latent):
            affine_invariant_prediction = self.decode_prediction(
                latent
            )  # [E,1,PPH,PPW]
            affine_invariant_prediction = affine_invariant_prediction.to(torch.float32)
            prediction = affine_to_metric(affine_invariant_prediction)
            prediction = self.image_processor.unpad_image(
                prediction, padding
            )  # [E,1,PH,PW]
            prediction = self.image_processor.resize_antialias(
                prediction, original_resolution, "bilinear", is_aa=False
            )  # [1,1,H,W]
            return prediction
        def loss_l1l2(input, target):
            out_l1 = torch.nn.functional.l1_loss(input, target)
            out_l2 = torch.nn.functional.mse_loss(input, target)
            out = out_l1 + out_l2
            return out, out_l2.sqrt()
        optimizer_params = [{"params": [pred_latent], "lr": lr_latent}]
        if override_shift is None:
            optimizer_params.append({"params": [shift], "lr": lr_scale_shift})
        if override_scale is None:
            optimizer_params.append({"params": [scale], "lr": lr_scale_shift})
        optimizer = torch.optim.Adam(optimizer_params)
        # Process the denoising loop
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        for iter, t in enumerate(
            self.progress_bar(self.scheduler.timesteps, desc=f"Marigold-DC steps ({str(device)})...")
        ):
            optimizer.zero_grad()
            batch_latent = torch.cat([image_latent, pred_latent], dim=1)  # [1,8,h,w]
            noise = self.unet(
                batch_latent,
                t,
                encoder_hidden_states=self.empty_text_embedding,
                return_dict=False,
            )[0]  # [1,4,h,w]
            # Compute pred_epsilon to later rescale the depth latent gradient
            with torch.no_grad():
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                beta_prod_t = 1 - alpha_prod_t
                pred_epsilon = (alpha_prod_t**0.5) * noise + (
                    beta_prod_t**0.5
                ) * pred_latent
            step_output = self.scheduler.step(noise, t, pred_latent, generator=generator)
            # Preview the final output depth, compute loss with guidance, backprop
            pred_original_sample = step_output.pred_original_sample
            current_metric_estimate = latent_to_metric(pred_original_sample)
            rmse = 0
            if sparse_depth is not None and sparse_depth.numel() > 0:
                loss, rmse = loss_l1l2(current_metric_estimate[sparse_mask], sparse_depth)
                rmse = rmse.item()
                loss.backward()
                # Scale gradients up
                with torch.no_grad():
                    pred_epsilon_norm = torch.linalg.norm(pred_epsilon).item()
                    depth_latent_grad_norm = torch.linalg.norm(pred_latent.grad).item()
                    scaling_factor = pred_epsilon_norm / max(depth_latent_grad_norm, 1e-8)
                    pred_latent.grad *= scaling_factor
                optimizer.step()
            with torch.no_grad():
                pred_latent.data = self.scheduler.step(noise, t, pred_latent, generator=generator).prev_sample
            yield current_metric_estimate, rmse
            del (
                pred_original_sample,
                current_metric_estimate,
                step_output,
                pred_epsilon,
                noise,
            )
            torch.cuda.empty_cache()
        # Offload all models
        self.maybe_free_model_hooks()
 | 
 
			
