File size: 7,831 Bytes
1619d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4724b80
 
f5d3829
 
1619d3a
 
 
 
 
 
ed350e2
 
 
 
 
 
1619d3a
 
 
0d00040
1619d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5d3829
1619d3a
 
 
 
 
 
 
 
 
0d00040
1619d3a
 
 
 
 
 
 
 
 
 
 
0d00040
 
 
 
 
 
 
 
 
 
1619d3a
 
 
d5942bf
 
 
 
 
 
e1d4031
 
 
d5942bf
 
 
 
 
 
e1d4031
 
 
1619d3a
 
 
 
 
 
 
 
d5942bf
1619d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5d3829
665492b
f5d3829
665492b
f5d3829
 
1619d3a
 
 
 
d5942bf
1619d3a
 
 
 
 
 
 
 
 
d5942bf
1619d3a
 
 
 
 
 
 
 
 
d5942bf
1619d3a
 
 
 
 
9a81ce3
0d00040
3151687
9a81ce3
3151687
 
 
 
 
 
 
 
1619d3a
3151687
1619d3a
 
d5942bf
1619d3a
1e6104e
ed350e2
 
 
 
 
 
 
 
 
 
1619d3a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import logging
import warnings

import diffusers
import numpy as np
import torch
from diffusers import MarigoldDepthPipeline

warnings.simplefilter(action="ignore", category=FutureWarning)
diffusers.utils.logging.disable_progress_bar()


class MarigoldDepthCompletionPipeline(MarigoldDepthPipeline):
    def __call__(
        self,
        image,
        sparse_depth,
        num_inference_steps=50,
        processing_resolution=0,
        seed=2024,
        lr_scale_shift=0.005,
        lr_latent=0.05,
        override_shift=None,
        override_scale=None,
        dry_run=False,
    ):
        # Resolving variables
        device = self._execution_device
        generator = torch.Generator(device=device).manual_seed(seed)

        if dry_run:
            logging.warning("Dry run mode")
            for i in range(num_inference_steps):
                yield np.array(image)[:, :, 0].astype(float), float(np.log(i + 1))
            return

        # Check inputs.
        if num_inference_steps is None:
            raise ValueError("Invalid num_inference_steps")
        if sparse_depth is not None and (type(sparse_depth) is not np.ndarray or sparse_depth.ndim != 2):
            raise ValueError(
                "Sparse depth should be a 2D numpy ndarray with zeros at missing positions"
            )

        with torch.no_grad():
            # Prepare empty text conditioning
            if self.empty_text_embedding is None:
                prompt = ""
                text_inputs = self.tokenizer(
                    prompt,
                    padding="do_not_pad",
                    max_length=self.tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids.to(device)
                self.empty_text_embedding = self.text_encoder(text_input_ids)[0]  # [1,2,1024]

        # Preprocess input images
        image, padding, original_resolution = self.image_processor.preprocess(
            image,
            processing_resolution=processing_resolution,
            device=device,
            dtype=self.dtype,
        )  # [N,3,PPH,PPW]

        if sparse_depth is not None and sparse_depth.shape != original_resolution:
            raise ValueError(
                f"Sparse depth dimensions ({sparse_depth.shape}) must match that of the image ({image.shape[-2:]})"
            )
        with torch.no_grad():
            # Encode input image into latent space
            image_latent, pred_latent = self.prepare_latents(
                image, None, generator, 1, 1
            )  # [N*E,4,h,w], [N*E,4,h,w]
        del image

        # Preprocess sparse depth
        if sparse_depth is not None:
            sparse_depth = torch.from_numpy(sparse_depth)[None, None].float()
            sparse_depth = sparse_depth.to(device)
            sparse_mask = sparse_depth > 0
            sparse_depth = sparse_depth[sparse_mask]
            sparse_depth_min = sparse_depth.min() if sparse_depth.numel() > 0 else 0
            sparse_depth_max = sparse_depth.max() if sparse_depth.numel() > 0 else 1
        else:
            sparse_depth_min = 0
            sparse_depth_max = 1

        # Set up optimization targets
        pred_latent = torch.nn.Parameter(pred_latent, requires_grad=True)

        if override_scale:
            scale = np.sqrt(override_scale)
            sparse_range = 1.0
        else:
            scale = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
            sparse_range = sparse_depth_max - sparse_depth_min
            if torch.is_tensor(sparse_range):
                sparse_range = sparse_range.item()

        if override_shift:
            shift = np.sqrt(override_shift)
            sparse_lower = 1.0
        else:
            shift = torch.nn.Parameter(torch.ones(1, device=device), requires_grad=True)
            sparse_lower = sparse_depth_min
            if torch.is_tensor(sparse_range):
                sparse_lower = sparse_lower.item()

        def affine_to_metric(depth):
            return (scale**2) * sparse_range * depth + (shift**2) * sparse_lower

        def latent_to_metric(latent):
            affine_invariant_prediction = self.decode_prediction(
                latent
            )  # [E,1,PPH,PPW]
            affine_invariant_prediction = affine_invariant_prediction.to(torch.float32)
            prediction = affine_to_metric(affine_invariant_prediction)
            prediction = self.image_processor.unpad_image(
                prediction, padding
            )  # [E,1,PH,PW]
            prediction = self.image_processor.resize_antialias(
                prediction, original_resolution, "bilinear", is_aa=False
            )  # [1,1,H,W]
            return prediction

        def loss_l1l2(input, target):
            out_l1 = torch.nn.functional.l1_loss(input, target)
            out_l2 = torch.nn.functional.mse_loss(input, target)
            out = out_l1 + out_l2
            return out, out_l2.sqrt()

        optimizer_params = [{"params": [pred_latent], "lr": lr_latent}]
        if override_shift is None:
            optimizer_params.append({"params": [shift], "lr": lr_scale_shift})
        if override_scale is None:
            optimizer_params.append({"params": [scale], "lr": lr_scale_shift})
        optimizer = torch.optim.Adam(optimizer_params)

        # Process the denoising loop
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        for iter, t in enumerate(
            self.progress_bar(self.scheduler.timesteps, desc=f"Marigold-DC steps ({str(device)})...")
        ):
            optimizer.zero_grad()

            batch_latent = torch.cat([image_latent, pred_latent], dim=1)  # [1,8,h,w]
            noise = self.unet(
                batch_latent,
                t,
                encoder_hidden_states=self.empty_text_embedding,
                return_dict=False,
            )[0]  # [1,4,h,w]

            # Compute pred_epsilon to later rescale the depth latent gradient
            with torch.no_grad():
                alpha_prod_t = self.scheduler.alphas_cumprod[t]
                beta_prod_t = 1 - alpha_prod_t
                pred_epsilon = (alpha_prod_t**0.5) * noise + (
                    beta_prod_t**0.5
                ) * pred_latent

            step_output = self.scheduler.step(noise, t, pred_latent, generator=generator)

            # Preview the final output depth, compute loss with guidance, backprop
            pred_original_sample = step_output.pred_original_sample
            current_metric_estimate = latent_to_metric(pred_original_sample)

            rmse = 0
            if sparse_depth is not None and sparse_depth.numel() > 0:
                loss, rmse = loss_l1l2(current_metric_estimate[sparse_mask], sparse_depth)
                rmse = rmse.item()
                loss.backward()

                # Scale gradients up
                with torch.no_grad():
                    pred_epsilon_norm = torch.linalg.norm(pred_epsilon).item()
                    depth_latent_grad_norm = torch.linalg.norm(pred_latent.grad).item()
                    scaling_factor = pred_epsilon_norm / max(depth_latent_grad_norm, 1e-8)
                    pred_latent.grad *= scaling_factor

                optimizer.step()

            with torch.no_grad():
                pred_latent.data = self.scheduler.step(noise, t, pred_latent, generator=generator).prev_sample

            yield current_metric_estimate, rmse

            del (
                pred_original_sample,
                current_metric_estimate,
                step_output,
                pred_epsilon,
                noise,
            )
            torch.cuda.empty_cache()

        # Offload all models
        self.maybe_free_model_hooks()