File size: 13,848 Bytes
10e9b7d
 
eccf8e4
3c4371f
b3af0f9
10e9b7d
e80aab9
3db6293
e80aab9
b3af0f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24677e
31243f4
 
 
 
7d65c66
b3af0f9
3c4371f
7e4a06b
f24677e
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
f24677e
31243f4
 
 
3c4371f
31243f4
f24677e
 
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
f24677e
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
f24677e
 
 
 
 
31243f4
 
 
 
 
 
f24677e
 
 
 
 
31243f4
7d65c66
 
 
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
f24677e
e80aab9
 
31243f4
f24677e
e80aab9
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
f24677e
31243f4
7d65c66
31243f4
3c4371f
f24677e
3c4371f
 
 
e80aab9
f24677e
31243f4
 
 
7d65c66
f24677e
31243f4
 
 
e80aab9
f24677e
 
 
 
 
 
 
 
e80aab9
 
f24677e
 
0ee0419
e514fd7
f24677e
 
e514fd7
f24677e
 
 
 
 
 
e514fd7
e80aab9
f24677e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
 
f24677e
 
 
 
7d65c66
3c4371f
f24677e
 
3c4371f
 
f24677e
3c4371f
f24677e
 
 
7d65c66
 
 
f24677e
 
 
 
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import LiteLLMModel, CodeAgent, Tool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Agent Tools ---
class MathSolver(Tool):
    name = "math_solver"
    description = "Safely evaluate basic math expressions."
    inputs = {"input": {"type": "string", "description": "Math expression to evaluate."}}
    output_type = "string"

    def forward(self, input: str) -> str:
        try:
            # Safe evaluation of math expressions
            allowed_names = {
                k: v for k, v in __builtins__.items() if k in [
                    'abs', 'round', 'min', 'max', 'sum', 'pow'
                ]
            }
            allowed_names.update({
                'int': int, 'float': float, 'str': str,
                '__builtins__': {}
            })
            return str(eval(input, allowed_names))
        except Exception as e:
            return f"Math error: {e}"

class FileAttachmentQueryTool(Tool):
    name = "run_query_with_file"
    description = "Downloads a file mentioned in a user prompt, adds it to the context, and runs a query on it."
    inputs = {
        "task_id": {
            "type": "string",
            "description": "A unique identifier for the task related to this file, used to download it.",
            "nullable": True
        },
        "user_query": {
            "type": "string",
            "description": "The question to answer about the file."
        }
    }
    output_type = "string"

    def forward(self, task_id: str | None, user_query: str) -> str:
        if not task_id:
            return "No task_id provided for file download."
        
        file_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
        try:
            file_response = requests.get(file_url)
            if file_response.status_code != 200:
                return f"Failed to download file: {file_response.status_code}"
            
            # For text-based files, return content directly
            file_content = file_response.text[:2000]  # Limit content size
            return f"Relevant information from file: {file_content}"
        except Exception as e:
            return f"File download error: {e}"

# --- Agent Implementation ---
def select_model(provider="groq"):
    """Select and return a model based on the provider."""
    GROQ_MODEL_NAME = "groq/llama3-70b-8192"
    HF_MODEL_NAME = "huggingfaceh4/zephyr-7b-beta"
    
    if provider == "groq":
        api_key = os.getenv("GROQ_API_KEY")
        if not api_key:
            raise ValueError("GROQ_API_KEY environment variable is not set")
        return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=api_key)
    elif provider == "hf":
        api_key = os.getenv("HF_TOKEN")
        if not api_key:
            raise ValueError("HF_TOKEN environment variable is not set")
        return LiteLLMModel(model_id=HF_MODEL_NAME, api_key=api_key)
    else:
        # Default to Groq if no valid provider specified
        api_key = os.getenv("GROQ_API_KEY")
        if not api_key:
            raise ValueError("GROQ_API_KEY environment variable is not set")
        return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=api_key)

class BasicAgent:
    def __init__(self, provider="groq"):
        model = select_model(provider)
        tools = [
            MathSolver(),
            FileAttachmentQueryTool(),
        ]
        self.agent = CodeAgent(
            model=model,
            tools=tools,
            add_base_tools=False,
            max_steps=15,
        )
        # System prompt to enforce exact answer format
        self.agent.prompt_templates["system_prompt"] = (
            "You are a GAIA benchmark AI assistant. Your sole purpose is to output the minimal, final answer. "
            "You must NEVER output explanations, intermediate steps, reasoning, or comments β€” only the answer. "
            "For numerical answers, use digits only, e.g., `4` not `four`. "
            "For string answers, omit articles ('a', 'the') and use full words. "
            "For lists, output in comma-separated format with no conjunctions. "
            "If the answer is not found, say `- unknown`."
        )

    def __call__(self, question: str) -> str:
        result = self.agent.run(question)
        # Extract only the final answer without any wrappers
        final_str = str(result).strip()
        # Remove any potential prefixes
        if final_str.startswith('[ANSWER]'):
            final_str = final_str[8:].strip()
        if final_str.startswith('Final answer:'):
            final_str = final_str[13:].strip()
        if final_str.startswith('Answer:'):
            final_str = final_str[7:].strip()
        return final_str

# --- Main Application Functions ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    # In the case of an app running as a hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    
    # Progress tracking
    progress_count = 0
    total_questions = len(questions_data)
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        # Update progress
        progress_count += 1
        print(f"Processing question {progress_count}/{total_questions}")
        
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=120)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"βœ… Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"❌ Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "❌ Submission Failed: The request timed out. Please try again."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"❌ Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"❌ An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

def test_agent(question: str, provider: str):
    """Test the agent with a single question."""
    try:
        agent = BasicAgent(provider=provider)
        answer = agent(question)
        return f"Question: {question}\nAnswer: {answer}"
    except Exception as e:
        return f"Error testing agent: {e}"

# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="GAIA Agent Evaluator") as demo:
    gr.Markdown("# πŸ€– GAIA Agent Evaluator")
    gr.Markdown(
        """
        This interface allows you to evaluate your agent against the GAIA benchmark questions.
        
        **Instructions:**
        1. Log in to your Hugging Face account using the button below
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers
        3. View your results and score in the output panel
        
        **For Testing:**
        Use the test section below to verify your agent works correctly with sample questions.
        """
    )
    
    with gr.Tab("Evaluation"):
        gr.Markdown("## πŸš€ Run Full Evaluation")
        gr.LoginButton()
        
        with gr.Row():
            run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
        
        status_output = gr.Textbox(label="πŸ“Š Status / Submission Result", lines=8, interactive=False)
        results_table = gr.DataFrame(label="πŸ“‹ Questions and Agent Answers", wrap=True)
        
        run_button.click(
            fn=run_and_submit_all,
            outputs=[status_output, results_table]
        )
    
    with gr.Tab("Testing"):
        gr.Markdown("## πŸ§ͺ Test Your Agent")
        with gr.Row():
            with gr.Column():
                test_question = gr.Textbox(
                    label="Question",
                    placeholder="Enter a test question...",
                    value="What is 2+2?"
                )
                provider_choice = gr.Radio(
                    choices=["groq", "hf"],
                    value="groq",
                    label="Provider"
                )
                test_button = gr.Button("Test Agent")
            with gr.Column():
                test_output = gr.Textbox(label="Agent Response", lines=10, interactive=False)
        
        test_button.click(
            fn=test_agent,
            inputs=[test_question, provider_choice],
            outputs=test_output
        )

if __name__ == "__main__":
    print("\n" + "="*50)
    print("πŸš€ GAIA Agent Evaluator Starting")
    print("="*50)
    
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")
    
    if space_host_startup:
        print(f"βœ… SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  Running locally (SPACE_HOST not found)")
    
    if space_id_startup:
        print(f"βœ… SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
    else:
        print("ℹ️  SPACE_ID not found (Repo URL cannot be determined)")
    
    print("="*50)
    print("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)