Spaces:
Sleeping
Sleeping
File size: 13,848 Bytes
10e9b7d eccf8e4 3c4371f b3af0f9 10e9b7d e80aab9 3db6293 e80aab9 b3af0f9 f24677e 31243f4 7d65c66 b3af0f9 3c4371f 7e4a06b f24677e 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 f24677e 31243f4 3c4371f 31243f4 f24677e 36ed51a c1fd3d2 3c4371f 7d65c66 31243f4 eccf8e4 f24677e 7d65c66 31243f4 3c4371f 31243f4 e80aab9 31243f4 3c4371f 7d65c66 3c4371f 7d65c66 31243f4 e80aab9 b177367 7d65c66 3c4371f f24677e 31243f4 f24677e 31243f4 7d65c66 31243f4 7d65c66 31243f4 3c4371f 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 7d65c66 31243f4 e80aab9 f24677e e80aab9 31243f4 f24677e e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 7d65c66 f24677e 31243f4 7d65c66 31243f4 3c4371f f24677e 3c4371f e80aab9 f24677e 31243f4 7d65c66 f24677e 31243f4 e80aab9 f24677e e80aab9 f24677e 0ee0419 e514fd7 f24677e e514fd7 f24677e e514fd7 e80aab9 f24677e e80aab9 f24677e 7d65c66 3c4371f f24677e 3c4371f f24677e 3c4371f f24677e 7d65c66 f24677e 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import LiteLLMModel, CodeAgent, Tool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Agent Tools ---
class MathSolver(Tool):
name = "math_solver"
description = "Safely evaluate basic math expressions."
inputs = {"input": {"type": "string", "description": "Math expression to evaluate."}}
output_type = "string"
def forward(self, input: str) -> str:
try:
# Safe evaluation of math expressions
allowed_names = {
k: v for k, v in __builtins__.items() if k in [
'abs', 'round', 'min', 'max', 'sum', 'pow'
]
}
allowed_names.update({
'int': int, 'float': float, 'str': str,
'__builtins__': {}
})
return str(eval(input, allowed_names))
except Exception as e:
return f"Math error: {e}"
class FileAttachmentQueryTool(Tool):
name = "run_query_with_file"
description = "Downloads a file mentioned in a user prompt, adds it to the context, and runs a query on it."
inputs = {
"task_id": {
"type": "string",
"description": "A unique identifier for the task related to this file, used to download it.",
"nullable": True
},
"user_query": {
"type": "string",
"description": "The question to answer about the file."
}
}
output_type = "string"
def forward(self, task_id: str | None, user_query: str) -> str:
if not task_id:
return "No task_id provided for file download."
file_url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
try:
file_response = requests.get(file_url)
if file_response.status_code != 200:
return f"Failed to download file: {file_response.status_code}"
# For text-based files, return content directly
file_content = file_response.text[:2000] # Limit content size
return f"Relevant information from file: {file_content}"
except Exception as e:
return f"File download error: {e}"
# --- Agent Implementation ---
def select_model(provider="groq"):
"""Select and return a model based on the provider."""
GROQ_MODEL_NAME = "groq/llama3-70b-8192"
HF_MODEL_NAME = "huggingfaceh4/zephyr-7b-beta"
if provider == "groq":
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY environment variable is not set")
return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=api_key)
elif provider == "hf":
api_key = os.getenv("HF_TOKEN")
if not api_key:
raise ValueError("HF_TOKEN environment variable is not set")
return LiteLLMModel(model_id=HF_MODEL_NAME, api_key=api_key)
else:
# Default to Groq if no valid provider specified
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
raise ValueError("GROQ_API_KEY environment variable is not set")
return LiteLLMModel(model_id=GROQ_MODEL_NAME, api_key=api_key)
class BasicAgent:
def __init__(self, provider="groq"):
model = select_model(provider)
tools = [
MathSolver(),
FileAttachmentQueryTool(),
]
self.agent = CodeAgent(
model=model,
tools=tools,
add_base_tools=False,
max_steps=15,
)
# System prompt to enforce exact answer format
self.agent.prompt_templates["system_prompt"] = (
"You are a GAIA benchmark AI assistant. Your sole purpose is to output the minimal, final answer. "
"You must NEVER output explanations, intermediate steps, reasoning, or comments β only the answer. "
"For numerical answers, use digits only, e.g., `4` not `four`. "
"For string answers, omit articles ('a', 'the') and use full words. "
"For lists, output in comma-separated format with no conjunctions. "
"If the answer is not found, say `- unknown`."
)
def __call__(self, question: str) -> str:
result = self.agent.run(question)
# Extract only the final answer without any wrappers
final_str = str(result).strip()
# Remove any potential prefixes
if final_str.startswith('[ANSWER]'):
final_str = final_str[8:].strip()
if final_str.startswith('Final answer:'):
final_str = final_str[13:].strip()
if final_str.startswith('Answer:'):
final_str = final_str[7:].strip()
return final_str
# --- Main Application Functions ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
# Progress tracking
progress_count = 0
total_questions = len(questions_data)
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Update progress
progress_count += 1
print(f"Processing question {progress_count}/{total_questions}")
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=120)
response.raise_for_status()
result_data = response.json()
final_status = (
f"β
Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"β Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "β Submission Failed: The request timed out. Please try again."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"β Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"β An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
def test_agent(question: str, provider: str):
"""Test the agent with a single question."""
try:
agent = BasicAgent(provider=provider)
answer = agent(question)
return f"Question: {question}\nAnswer: {answer}"
except Exception as e:
return f"Error testing agent: {e}"
# --- Build Gradio Interface using Blocks ---
with gr.Blocks(title="GAIA Agent Evaluator") as demo:
gr.Markdown("# π€ GAIA Agent Evaluator")
gr.Markdown(
"""
This interface allows you to evaluate your agent against the GAIA benchmark questions.
**Instructions:**
1. Log in to your Hugging Face account using the button below
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers
3. View your results and score in the output panel
**For Testing:**
Use the test section below to verify your agent works correctly with sample questions.
"""
)
with gr.Tab("Evaluation"):
gr.Markdown("## π Run Full Evaluation")
gr.LoginButton()
with gr.Row():
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="π Status / Submission Result", lines=8, interactive=False)
results_table = gr.DataFrame(label="π Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
with gr.Tab("Testing"):
gr.Markdown("## π§ͺ Test Your Agent")
with gr.Row():
with gr.Column():
test_question = gr.Textbox(
label="Question",
placeholder="Enter a test question...",
value="What is 2+2?"
)
provider_choice = gr.Radio(
choices=["groq", "hf"],
value="groq",
label="Provider"
)
test_button = gr.Button("Test Agent")
with gr.Column():
test_output = gr.Textbox(label="Agent Response", lines=10, interactive=False)
test_button.click(
fn=test_agent,
inputs=[test_question, provider_choice],
outputs=test_output
)
if __name__ == "__main__":
print("\n" + "="*50)
print("π GAIA Agent Evaluator Starting")
print("="*50)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"β
SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL: https://{space_host_startup}.hf.space")
else:
print("βΉοΈ Running locally (SPACE_HOST not found)")
if space_id_startup:
print(f"β
SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
else:
print("βΉοΈ SPACE_ID not found (Repo URL cannot be determined)")
print("="*50)
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |