olcapone commited on
Commit
6963da5
Β·
verified Β·
1 Parent(s): 4fbfc56

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -61
app.py CHANGED
@@ -1,25 +1,13 @@
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
 
6
 
7
- # (Keep Constants as is)
8
  # --- Constants ---
9
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
 
11
- # --- Basic Agent Definition ---
12
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
- class BasicAgent:
14
- def __init__(self):
15
- print("BasicAgent initialized.")
16
- def __call__(self, question: str) -> str:
17
- print(f"Agent received question (first 50 chars): {question[:50]}...")
18
- fixed_answer = "This is a default answer."
19
- print(f"Agent returning fixed answer: {fixed_answer}")
20
- return fixed_answer
21
-
22
- def run_and_submit_all( profile: gr.OAuthProfile | None):
23
  """
24
  Fetches all questions, runs the BasicAgent on them, submits all answers,
25
  and displays the results.
@@ -28,7 +16,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
28
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
 
30
  if profile:
31
- username= f"{profile.username}"
32
  print(f"User logged in: {username}")
33
  else:
34
  print("User not logged in.")
@@ -38,20 +26,21 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
38
  questions_url = f"{api_url}/questions"
39
  submit_url = f"{api_url}/submit"
40
 
41
- # 1. Instantiate Agent ( modify this part to create your agent)
42
  try:
43
  agent = BasicAgent()
44
  except Exception as e:
45
  print(f"Error instantiating agent: {e}")
46
  return f"Error initializing agent: {e}", None
47
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
 
48
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
  print(agent_code)
50
 
51
  # 2. Fetch Questions
52
  print(f"Fetching questions from: {questions_url}")
53
  try:
54
- response = requests.get(questions_url, timeout=15)
55
  response.raise_for_status()
56
  questions_data = response.json()
57
  if not questions_data:
@@ -73,12 +62,22 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
73
  results_log = []
74
  answers_payload = []
75
  print(f"Running agent on {len(questions_data)} questions...")
 
 
 
 
 
76
  for item in questions_data:
77
  task_id = item.get("task_id")
78
  question_text = item.get("question")
79
  if not task_id or question_text is None:
80
  print(f"Skipping item with missing task_id or question: {item}")
81
  continue
 
 
 
 
 
82
  try:
83
  submitted_answer = agent(question_text)
84
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
@@ -99,11 +98,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
99
  # 5. Submit
100
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
  try:
102
- response = requests.post(submit_url, json=submission_data, timeout=60)
103
  response.raise_for_status()
104
  result_data = response.json()
105
  final_status = (
106
- f"Submission Successful!\n"
107
  f"User: {result_data.get('username')}\n"
108
  f"Overall Score: {result_data.get('score', 'N/A')}% "
109
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
@@ -119,78 +118,112 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
119
  error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
  except requests.exceptions.JSONDecodeError:
121
  error_detail += f" Response: {e.response.text[:500]}"
122
- status_message = f"Submission Failed: {error_detail}"
123
  print(status_message)
124
  results_df = pd.DataFrame(results_log)
125
  return status_message, results_df
126
  except requests.exceptions.Timeout:
127
- status_message = "Submission Failed: The request timed out."
128
  print(status_message)
129
  results_df = pd.DataFrame(results_log)
130
  return status_message, results_df
131
  except requests.exceptions.RequestException as e:
132
- status_message = f"Submission Failed: Network error - {e}"
133
  print(status_message)
134
  results_df = pd.DataFrame(results_log)
135
  return status_message, results_df
136
  except Exception as e:
137
- status_message = f"An unexpected error occurred during submission: {e}"
138
  print(status_message)
139
  results_df = pd.DataFrame(results_log)
140
  return status_message, results_df
141
 
 
 
 
 
 
 
 
 
142
 
143
  # --- Build Gradio Interface using Blocks ---
144
- with gr.Blocks() as demo:
145
- gr.Markdown("# Basic Agent Evaluation Runner")
146
  gr.Markdown(
147
  """
 
 
148
  **Instructions:**
149
-
150
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
-
154
- ---
155
- **Disclaimers:**
156
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
  """
159
  )
160
-
161
- gr.LoginButton()
162
-
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
164
-
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- # Removed max_rows=10 from DataFrame constructor
167
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
-
169
- run_button.click(
170
- fn=run_and_submit_all,
171
- outputs=[status_output, results_table]
172
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
174
  if __name__ == "__main__":
175
- print("\n" + "-"*30 + " App Starting " + "-"*30)
 
 
 
176
  # Check for SPACE_HOST and SPACE_ID at startup for information
177
  space_host_startup = os.getenv("SPACE_HOST")
178
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
-
180
  if space_host_startup:
181
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
182
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
  else:
184
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
-
186
- if space_id_startup: # Print repo URLs if SPACE_ID is found
187
  print(f"βœ… SPACE_ID found: {space_id_startup}")
188
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
  else:
191
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
-
193
- print("-"*(60 + len(" App Starting ")) + "\n")
194
-
195
- print("Launching Gradio Interface for Basic Agent Evaluation...")
196
  demo.launch(debug=True, share=False)
 
1
  import os
2
  import gradio as gr
3
  import requests
 
4
  import pandas as pd
5
+ from agent import BasicAgent
6
 
 
7
  # --- Constants ---
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
9
 
10
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
 
 
 
 
 
 
 
 
 
 
 
11
  """
12
  Fetches all questions, runs the BasicAgent on them, submits all answers,
13
  and displays the results.
 
16
  space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
17
 
18
  if profile:
19
+ username = f"{profile.username}"
20
  print(f"User logged in: {username}")
21
  else:
22
  print("User not logged in.")
 
26
  questions_url = f"{api_url}/questions"
27
  submit_url = f"{api_url}/submit"
28
 
29
+ # 1. Instantiate Agent
30
  try:
31
  agent = BasicAgent()
32
  except Exception as e:
33
  print(f"Error instantiating agent: {e}")
34
  return f"Error initializing agent: {e}", None
35
+
36
+ # In the case of an app running as a hugging Face space, this link points toward your codebase
37
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
38
  print(agent_code)
39
 
40
  # 2. Fetch Questions
41
  print(f"Fetching questions from: {questions_url}")
42
  try:
43
+ response = requests.get(questions_url, timeout=30)
44
  response.raise_for_status()
45
  questions_data = response.json()
46
  if not questions_data:
 
62
  results_log = []
63
  answers_payload = []
64
  print(f"Running agent on {len(questions_data)} questions...")
65
+
66
+ # Progress tracking
67
+ progress_count = 0
68
+ total_questions = len(questions_data)
69
+
70
  for item in questions_data:
71
  task_id = item.get("task_id")
72
  question_text = item.get("question")
73
  if not task_id or question_text is None:
74
  print(f"Skipping item with missing task_id or question: {item}")
75
  continue
76
+
77
+ # Update progress
78
+ progress_count += 1
79
+ print(f"Processing question {progress_count}/{total_questions}")
80
+
81
  try:
82
  submitted_answer = agent(question_text)
83
  answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
 
98
  # 5. Submit
99
  print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
100
  try:
101
+ response = requests.post(submit_url, json=submission_data, timeout=120)
102
  response.raise_for_status()
103
  result_data = response.json()
104
  final_status = (
105
+ f"βœ… Submission Successful!\n"
106
  f"User: {result_data.get('username')}\n"
107
  f"Overall Score: {result_data.get('score', 'N/A')}% "
108
  f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
 
118
  error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
119
  except requests.exceptions.JSONDecodeError:
120
  error_detail += f" Response: {e.response.text[:500]}"
121
+ status_message = f"❌ Submission Failed: {error_detail}"
122
  print(status_message)
123
  results_df = pd.DataFrame(results_log)
124
  return status_message, results_df
125
  except requests.exceptions.Timeout:
126
+ status_message = "❌ Submission Failed: The request timed out. Please try again."
127
  print(status_message)
128
  results_df = pd.DataFrame(results_log)
129
  return status_message, results_df
130
  except requests.exceptions.RequestException as e:
131
+ status_message = f"❌ Submission Failed: Network error - {e}"
132
  print(status_message)
133
  results_df = pd.DataFrame(results_log)
134
  return status_message, results_df
135
  except Exception as e:
136
+ status_message = f"❌ An unexpected error occurred during submission: {e}"
137
  print(status_message)
138
  results_df = pd.DataFrame(results_log)
139
  return status_message, results_df
140
 
141
+ def test_agent(question: str, provider: str):
142
+ """Test the agent with a single question."""
143
+ try:
144
+ agent = BasicAgent(provider=provider)
145
+ answer = agent(question)
146
+ return f"Question: {question}\nAnswer: {answer}"
147
+ except Exception as e:
148
+ return f"Error testing agent: {e}"
149
 
150
  # --- Build Gradio Interface using Blocks ---
151
+ with gr.Blocks(title="GAIA Agent Evaluator") as demo:
152
+ gr.Markdown("# πŸ€– GAIA Agent Evaluator")
153
  gr.Markdown(
154
  """
155
+ This interface allows you to evaluate your agent against the GAIA benchmark questions.
156
+
157
  **Instructions:**
158
+ 1. Log in to your Hugging Face account using the button below
159
+ 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers
160
+ 3. View your results and score in the output panel
161
+
162
+ **For Testing:**
163
+ Use the test section below to verify your agent works correctly with sample questions.
 
 
 
164
  """
165
  )
166
+
167
+ with gr.Tab("Evaluation"):
168
+ gr.Markdown("## πŸš€ Run Full Evaluation")
169
+ gr.LoginButton()
170
+
171
+ with gr.Row():
172
+ run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
173
+
174
+ status_output = gr.Textbox(label="πŸ“Š Status / Submission Result", lines=8, interactive=False)
175
+ results_table = gr.DataFrame(label="πŸ“‹ Questions and Agent Answers", wrap=True)
176
+
177
+ run_button.click(
178
+ fn=run_and_submit_all,
179
+ outputs=[status_output, results_table]
180
+ )
181
+
182
+ with gr.Tab("Testing"):
183
+ gr.Markdown("## πŸ§ͺ Test Your Agent")
184
+ with gr.Row():
185
+ with gr.Column():
186
+ test_question = gr.Textbox(
187
+ label="Question",
188
+ placeholder="Enter a test question...",
189
+ value="What is 2+2?"
190
+ )
191
+ provider_choice = gr.Radio(
192
+ choices=["groq", "hf"],
193
+ value="groq",
194
+ label="Provider"
195
+ )
196
+ test_button = gr.Button("Test Agent")
197
+ with gr.Column():
198
+ test_output = gr.Textbox(label="Agent Response", lines=10, interactive=False)
199
+
200
+ test_button.click(
201
+ fn=test_agent,
202
+ inputs=[test_question, provider_choice],
203
+ outputs=test_output
204
+ )
205
 
206
  if __name__ == "__main__":
207
+ print("\n" + "="*50)
208
+ print("πŸš€ GAIA Agent Evaluator Starting")
209
+ print("="*50)
210
+
211
  # Check for SPACE_HOST and SPACE_ID at startup for information
212
  space_host_startup = os.getenv("SPACE_HOST")
213
+ space_id_startup = os.getenv("SPACE_ID")
214
+
215
  if space_host_startup:
216
  print(f"βœ… SPACE_HOST found: {space_host_startup}")
217
+ print(f" Runtime URL: https://{space_host_startup}.hf.space")
218
  else:
219
+ print("ℹ️ Running locally (SPACE_HOST not found)")
220
+
221
+ if space_id_startup:
222
  print(f"βœ… SPACE_ID found: {space_id_startup}")
223
  print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
 
224
  else:
225
+ print("ℹ️ SPACE_ID not found (Repo URL cannot be determined)")
226
+
227
+ print("="*50)
228
+ print("Launching Gradio Interface...")
 
229
  demo.launch(debug=True, share=False)