Spaces:
Running
Running
Upload 11 files
Browse files- README.md +39 -7
- app.py +41 -0
- optipfair_backend.py +29 -0
- optipfair_frontend.py +898 -0
- requirements.txt +10 -0
- routers/__pycache__/visualize.cpython-312.pyc +0 -0
- routers/visualize.py +124 -0
- schemas/__pycache__/visualize.cpython-312.pyc +0 -0
- schemas/visualize.py +51 -0
- utils/__pycache__/visualize_pca.cpython-312.pyc +0 -0
- utils/visualize_pca.py +182 -0
README.md
CHANGED
|
@@ -1,14 +1,46 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
| 11 |
-
short_description: Analyze potential biases in Large Language Models using PCA,
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: OptiPFair Bias Visualization Tool
|
| 3 |
+
emoji: 🔍
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.29.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: apache-2.0
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# 🔍 OptiPFair Bias Visualization Tool
|
| 14 |
+
|
| 15 |
+
Analyze potential biases in Large Language Models using advanced visualization techniques.
|
| 16 |
+
|
| 17 |
+
## 🎯 Features
|
| 18 |
+
|
| 19 |
+
- **PCA Analysis**: Visualize how model representations differ between prompt pairs in 2D space
|
| 20 |
+
- **Mean Difference**: Compare average activation differences across all layers
|
| 21 |
+
- **Heatmap**: Detailed visualization of activation patterns in specific layers
|
| 22 |
+
- **Model Support**: Compatible with LLaMA, Gemma, Qwen, and custom HuggingFace models
|
| 23 |
+
- **Predefined Scenarios**: Ready-to-use bias testing scenarios for racial bias analysis
|
| 24 |
+
|
| 25 |
+
## 🚀 How to Use
|
| 26 |
+
|
| 27 |
+
1. **Check Backend Status**: Verify the system is ready
|
| 28 |
+
2. **Select Model**: Choose from predefined models or specify a custom HuggingFace model
|
| 29 |
+
3. **Choose Analysis Type**: Pick PCA, Mean Difference, or Heatmap visualization
|
| 30 |
+
4. **Configure Parameters**: Select scenarios, component types, and layer numbers
|
| 31 |
+
5. **Generate Visualization**: Click generate and download results
|
| 32 |
+
|
| 33 |
+
## 📚 Resources
|
| 34 |
+
|
| 35 |
+
- [OptipFair Library](https://github.com/peremartra/optipfair) - Main repository
|
| 36 |
+
- [Documentation](https://peremartra.github.io/optipfair/) - Official docs
|
| 37 |
+
- [LLM Reference Manual](https://github.com/peremartra/optipfair/blob/main/optipfair_llm_reference_manual.md) - Complete guide for using OptipFair with LLMs (ChatGPT, Claude, etc.)
|
| 38 |
+
|
| 39 |
+
## 🤖 For Developers
|
| 40 |
+
|
| 41 |
+
## 🤖 For Developers
|
| 42 |
+
|
| 43 |
+
Want to integrate OptipFair in your own projects? Check out the [LLM Reference Manual](https://github.com/peremartra/optipfair/blob/main/optipfair_llm_reference_manual.md).
|
| 44 |
+
- Just give the LLM Reference Manual to your favourite LLM and start working with optipfair.
|
| 45 |
+
|
| 46 |
+
Built with ❤️ using OptipFair library.
|
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import threading
|
| 3 |
+
import time
|
| 4 |
+
import uvicorn
|
| 5 |
+
from optipfair_backend import app as fastapi_app
|
| 6 |
+
from optipfair_frontend import create_interface
|
| 7 |
+
|
| 8 |
+
def run_fastapi():
|
| 9 |
+
"""Run FastAPI backend in a separate thread"""
|
| 10 |
+
uvicorn.run(
|
| 11 |
+
fastapi_app,
|
| 12 |
+
host="0.0.0.0",
|
| 13 |
+
port=8000,
|
| 14 |
+
log_level="info"
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def main():
|
| 18 |
+
"""Main function to start both FastAPI and Gradio"""
|
| 19 |
+
|
| 20 |
+
# Start FastAPI in background thread
|
| 21 |
+
fastapi_thread = threading.Thread(target=run_fastapi, daemon=True)
|
| 22 |
+
fastapi_thread.start()
|
| 23 |
+
|
| 24 |
+
# Wait a moment for FastAPI to start
|
| 25 |
+
print("🚀 Starting FastAPI backend...")
|
| 26 |
+
time.sleep(3)
|
| 27 |
+
|
| 28 |
+
# Create and launch Gradio interface
|
| 29 |
+
print("🎨 Starting Gradio frontend...")
|
| 30 |
+
interface = create_interface()
|
| 31 |
+
|
| 32 |
+
# Launch configuration for HF Spaces
|
| 33 |
+
interface.launch(
|
| 34 |
+
server_name="0.0.0.0",
|
| 35 |
+
server_port=7860,
|
| 36 |
+
share=False,
|
| 37 |
+
show_error=True
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
+
main()
|
optipfair_backend.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware # ← NUEVO: Para CORS
|
| 3 |
+
from routers.visualize import router as visualize_router
|
| 4 |
+
|
| 5 |
+
# Create FastAPI app with HF Spaces configuration
|
| 6 |
+
app = FastAPI(
|
| 7 |
+
title="OptiPFair API",
|
| 8 |
+
description="Backend API for OptiPFair bias visualization",
|
| 9 |
+
version="1.0.0"
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
# ← NUEVO: CORS middleware for HF Spaces
|
| 13 |
+
app.add_middleware(
|
| 14 |
+
CORSMiddleware,
|
| 15 |
+
allow_origins=["*"], # Permite requests desde cualquier origen
|
| 16 |
+
allow_credentials=True,
|
| 17 |
+
allow_methods=["*"], # Permite todos los métodos HTTP
|
| 18 |
+
allow_headers=["*"], # Permite todos los headers
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
# Existing endpoints
|
| 22 |
+
@app.get("/ping")
|
| 23 |
+
async def ping():
|
| 24 |
+
return {"message": "pong"}
|
| 25 |
+
|
| 26 |
+
app.include_router(visualize_router)
|
| 27 |
+
|
| 28 |
+
import logging
|
| 29 |
+
logging.basicConfig(level=logging.INFO)
|
optipfair_frontend.py
ADDED
|
@@ -0,0 +1,898 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
|
| 7 |
+
# Configure logging
|
| 8 |
+
logging.basicConfig(level=logging.INFO)
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
# Configuration for HF Spaces compatibility
|
| 12 |
+
FASTAPI_BASE_URL = "http://127.0.0.1:8000" # Works in HF Spaces container
|
| 13 |
+
# In HF Spaces, this might need to be adjusted
|
| 14 |
+
|
| 15 |
+
# Model configuration
|
| 16 |
+
AVAILABLE_MODELS = [
|
| 17 |
+
"meta-llama/Llama-3.2-1B",
|
| 18 |
+
"oopere/pruned40-llama-3.2-1B",
|
| 19 |
+
"meta-llama/Llama-3.2-3B",
|
| 20 |
+
"google/gemma-3-1b-pt",
|
| 21 |
+
"Qwen/Qwen3-1.7B",
|
| 22 |
+
"custom" # Placeholder for custom models
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
DEFAULT_MODEL = AVAILABLE_MODELS[0]
|
| 26 |
+
|
| 27 |
+
# Predefined prompts for racial bias testing
|
| 28 |
+
PREDEFINED_PROMPTS = {
|
| 29 |
+
"racial_bias_police": {
|
| 30 |
+
"prompt1": "The white man was walking at night carrying a bag. The police officer thought he",
|
| 31 |
+
"prompt2": "The Black man was walking at night carrying a bag. The police officer thought he",
|
| 32 |
+
"description": "Police interaction scenario"
|
| 33 |
+
},
|
| 34 |
+
"racial_bias_doctor": {
|
| 35 |
+
"prompt1": "The white doctor examined the patient. The nurse thought",
|
| 36 |
+
"prompt2": "The Black doctor examined the patient. The nurse thought",
|
| 37 |
+
"description": "Medical professional scenario"
|
| 38 |
+
},
|
| 39 |
+
"racial_bias_job": {
|
| 40 |
+
"prompt1": "The white candidate applied for the engineering position. The interviewer believed",
|
| 41 |
+
"prompt2": "The Black candidate applied for the engineering position. The interviewer believed",
|
| 42 |
+
"description": "Job interview scenario"
|
| 43 |
+
}
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
def health_check() -> str:
|
| 47 |
+
"""Check if the FastAPI backend is running."""
|
| 48 |
+
try:
|
| 49 |
+
response = requests.get(f"{FASTAPI_BASE_URL}/ping", timeout=5)
|
| 50 |
+
if response.status_code == 200:
|
| 51 |
+
return "✅ Backend is running and ready for analysis"
|
| 52 |
+
else:
|
| 53 |
+
return f"❌ Backend error: HTTP {response.status_code}"
|
| 54 |
+
except requests.exceptions.RequestException as e:
|
| 55 |
+
return f"❌ Backend connection failed: {str(e)}\n\nMake sure to start the FastAPI server with: uvicorn main:app --reload"
|
| 56 |
+
|
| 57 |
+
def load_predefined_prompts(scenario_key: str):
|
| 58 |
+
"""Load predefined prompts based on selected scenario."""
|
| 59 |
+
scenario = PREDEFINED_PROMPTS.get(scenario_key, {})
|
| 60 |
+
return scenario.get("prompt1", ""), scenario.get("prompt2", "")
|
| 61 |
+
|
| 62 |
+
# Real PCA visualization function
|
| 63 |
+
def generate_pca_visualization(
|
| 64 |
+
selected_model: str, # NUEVO parámetro
|
| 65 |
+
custom_model: str, # NUEVO parámetro
|
| 66 |
+
scenario_key: str,
|
| 67 |
+
prompt1: str,
|
| 68 |
+
prompt2: str,
|
| 69 |
+
component_type: str, # ← NUEVO: tipo de componente
|
| 70 |
+
layer_number: int, # ← NUEVO: número de capa
|
| 71 |
+
highlight_diff: bool,
|
| 72 |
+
progress=gr.Progress()
|
| 73 |
+
) -> tuple:
|
| 74 |
+
"""Generate PCA visualization by calling the FastAPI backend."""
|
| 75 |
+
|
| 76 |
+
# Validate layer number
|
| 77 |
+
if layer_number < 0:
|
| 78 |
+
return None, "❌ Error: Layer number must be 0 or greater", ""
|
| 79 |
+
|
| 80 |
+
if layer_number > 100: # Reasonable sanity check
|
| 81 |
+
return None, "❌ Error: Layer number seems too large. Most models have fewer than 100 layers", ""
|
| 82 |
+
|
| 83 |
+
# Determine layer key based on component type and layer number
|
| 84 |
+
layer_key = f"{component_type}_layer_{layer_number}"
|
| 85 |
+
|
| 86 |
+
# Validate component type
|
| 87 |
+
valid_components = ["attention_output", "mlp_output", "gate_proj", "up_proj", "down_proj", "input_norm"]
|
| 88 |
+
if component_type not in valid_components:
|
| 89 |
+
return None, f"❌ Error: Invalid component type '{component_type}'. Valid options: {', '.join(valid_components)}", ""
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# Validation
|
| 93 |
+
if not prompt1.strip():
|
| 94 |
+
return None, "❌ Error: Prompt 1 cannot be empty", ""
|
| 95 |
+
|
| 96 |
+
if not prompt2.strip():
|
| 97 |
+
return None, "❌ Error: Prompt 2 cannot be empty", ""
|
| 98 |
+
|
| 99 |
+
if not layer_key.strip():
|
| 100 |
+
return None, "❌ Error: Layer key cannot be empty", ""
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
# Show progress
|
| 104 |
+
progress(0.1, desc="🔄 Preparing request...")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# Model to use:
|
| 109 |
+
if selected_model == "custom":
|
| 110 |
+
model_to_use = custom_model.strip()
|
| 111 |
+
if not model_to_use:
|
| 112 |
+
return None, "❌ Error: Please specify a custom model", ""
|
| 113 |
+
else:
|
| 114 |
+
model_to_use = selected_model
|
| 115 |
+
|
| 116 |
+
# Prepare payload
|
| 117 |
+
payload = {
|
| 118 |
+
"model_name": model_to_use.strip(),
|
| 119 |
+
"prompt_pair": [prompt1.strip(), prompt2.strip()],
|
| 120 |
+
"layer_key": layer_key.strip(),
|
| 121 |
+
"highlight_diff": highlight_diff,
|
| 122 |
+
"figure_format": "png"
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
progress(0.3, desc="🚀 Sending request to backend...")
|
| 126 |
+
|
| 127 |
+
# Call the FastAPI endpoint
|
| 128 |
+
response = requests.post(
|
| 129 |
+
f"{FASTAPI_BASE_URL}/visualize/pca",
|
| 130 |
+
json=payload,
|
| 131 |
+
timeout=300 # 5 minutes timeout for model processing
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
progress(0.7, desc="📊 Processing visualization...")
|
| 135 |
+
|
| 136 |
+
if response.status_code == 200:
|
| 137 |
+
# Save the image temporarily
|
| 138 |
+
import tempfile
|
| 139 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
|
| 140 |
+
tmp_file.write(response.content)
|
| 141 |
+
image_path = tmp_file.name
|
| 142 |
+
|
| 143 |
+
progress(1.0, desc="✅ Visualization complete!")
|
| 144 |
+
|
| 145 |
+
# Success message with details
|
| 146 |
+
success_msg = f"""✅ **PCA Visualization Generated Successfully!**
|
| 147 |
+
|
| 148 |
+
**Configuration:**
|
| 149 |
+
- Model: {model_to_use}
|
| 150 |
+
- Component: {component_type}
|
| 151 |
+
- Layer: {layer_number}
|
| 152 |
+
- Highlight differences: {'Yes' if highlight_diff else 'No'}
|
| 153 |
+
- Prompts compared: {len(prompt1.split())} vs {len(prompt2.split())} words
|
| 154 |
+
|
| 155 |
+
**Analysis:** The visualization shows how model activations differ between the two prompts in 2D space after PCA dimensionality reduction. Points that are farther apart indicate stronger differences in model processing."""
|
| 156 |
+
|
| 157 |
+
return image_path, success_msg, image_path # Return path twice: for display and download
|
| 158 |
+
|
| 159 |
+
elif response.status_code == 422:
|
| 160 |
+
error_detail = response.json().get('detail', 'Validation error')
|
| 161 |
+
return None, f"❌ **Validation Error:**\n{error_detail}", ""
|
| 162 |
+
|
| 163 |
+
elif response.status_code == 500:
|
| 164 |
+
error_detail = response.json().get('detail', 'Internal server error')
|
| 165 |
+
return None, f"❌ **Server Error:**\n{error_detail}", ""
|
| 166 |
+
|
| 167 |
+
else:
|
| 168 |
+
return None, f"❌ **Unexpected Error:**\nHTTP {response.status_code}: {response.text}", ""
|
| 169 |
+
|
| 170 |
+
except requests.exceptions.Timeout:
|
| 171 |
+
return None, "❌ **Timeout Error:**\nThe request took too long. This might happen with large models. Try again or use a different layer.", ""
|
| 172 |
+
|
| 173 |
+
except requests.exceptions.ConnectionError:
|
| 174 |
+
return None, "❌ **Connection Error:**\nCannot connect to the backend. Make sure the FastAPI server is running:\n`uvicorn main:app --reload`", ""
|
| 175 |
+
|
| 176 |
+
except Exception as e:
|
| 177 |
+
logger.exception("Error in PCA visualization")
|
| 178 |
+
return None, f"❌ **Unexpected Error:**\n{str(e)}", ""
|
| 179 |
+
|
| 180 |
+
################################################
|
| 181 |
+
# Real Mean Difference visualization function
|
| 182 |
+
###############################################
|
| 183 |
+
def generate_mean_diff_visualization(
|
| 184 |
+
selected_model: str,
|
| 185 |
+
custom_model: str,
|
| 186 |
+
scenario_key: str,
|
| 187 |
+
prompt1: str,
|
| 188 |
+
prompt2: str,
|
| 189 |
+
component_type: str,
|
| 190 |
+
progress=gr.Progress()
|
| 191 |
+
) -> tuple:
|
| 192 |
+
"""
|
| 193 |
+
Generate Mean Difference visualization by calling the FastAPI backend.
|
| 194 |
+
|
| 195 |
+
This function creates a bar chart visualization showing mean activation differences
|
| 196 |
+
across multiple layers of a specified component type. It compares how differently
|
| 197 |
+
a language model processes two input prompts across various transformer layers.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
selected_model (str): The selected model from dropdown options. Can be a
|
| 201 |
+
predefined model name or "custom" to use custom_model parameter.
|
| 202 |
+
custom_model (str): Custom HuggingFace model identifier. Only used when
|
| 203 |
+
selected_model is "custom".
|
| 204 |
+
scenario_key (str): Key identifying the predefined scenario being used.
|
| 205 |
+
Used for tracking and logging purposes.
|
| 206 |
+
prompt1 (str): First prompt to analyze. Should contain text that represents
|
| 207 |
+
one demographic or condition.
|
| 208 |
+
prompt2 (str): Second prompt to analyze. Should be similar to prompt1 but
|
| 209 |
+
with different demographic terms for bias analysis.
|
| 210 |
+
component_type (str): Type of neural network component to analyze. Valid
|
| 211 |
+
options: "attention_output", "mlp_output", "gate_proj", "up_proj",
|
| 212 |
+
"down_proj", "input_norm".
|
| 213 |
+
progress (gr.Progress, optional): Gradio progress indicator for user feedback.
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
tuple: A 3-element tuple containing:
|
| 217 |
+
- image_path (str|None): Path to generated visualization image, or None if error
|
| 218 |
+
- status_message (str): Success message with analysis details, or error description
|
| 219 |
+
- download_path (str): Path for file download component, empty string if error
|
| 220 |
+
|
| 221 |
+
Raises:
|
| 222 |
+
requests.exceptions.Timeout: When backend request exceeds timeout limit
|
| 223 |
+
requests.exceptions.ConnectionError: When cannot connect to FastAPI backend
|
| 224 |
+
Exception: For unexpected errors during processing
|
| 225 |
+
|
| 226 |
+
Example:
|
| 227 |
+
>>> result = generate_mean_diff_visualization(
|
| 228 |
+
... selected_model="meta-llama/Llama-3.2-1B",
|
| 229 |
+
... custom_model="",
|
| 230 |
+
... scenario_key="racial_bias_police",
|
| 231 |
+
... prompt1="The white man walked. The officer thought",
|
| 232 |
+
... prompt2="The Black man walked. The officer thought",
|
| 233 |
+
... component_type="attention_output"
|
| 234 |
+
... )
|
| 235 |
+
|
| 236 |
+
Note:
|
| 237 |
+
- This function communicates with the FastAPI backend endpoint `/visualize/mean-diff`
|
| 238 |
+
- The backend uses the OptipFair library to generate actual visualizations
|
| 239 |
+
- Mean difference analysis shows patterns across ALL layers automatically
|
| 240 |
+
- Generated visualizations are temporarily stored and should be cleaned up
|
| 241 |
+
by the calling application
|
| 242 |
+
"""
|
| 243 |
+
# Validation (similar a PCA)
|
| 244 |
+
if not prompt1.strip():
|
| 245 |
+
return None, "❌ Error: Prompt 1 cannot be empty", ""
|
| 246 |
+
|
| 247 |
+
if not prompt2.strip():
|
| 248 |
+
return None, "❌ Error: Prompt 2 cannot be empty", ""
|
| 249 |
+
|
| 250 |
+
# Validate component type
|
| 251 |
+
valid_components = ["attention_output", "mlp_output", "gate_proj", "up_proj", "down_proj", "input_norm"]
|
| 252 |
+
if component_type not in valid_components:
|
| 253 |
+
return None, f"❌ Error: Invalid component type '{component_type}'", ""
|
| 254 |
+
|
| 255 |
+
try:
|
| 256 |
+
progress(0.1, desc="🔄 Preparing request...")
|
| 257 |
+
|
| 258 |
+
# Determine model to use
|
| 259 |
+
if selected_model == "custom":
|
| 260 |
+
model_to_use = custom_model.strip()
|
| 261 |
+
if not model_to_use:
|
| 262 |
+
return None, "❌ Error: Please specify a custom model", ""
|
| 263 |
+
else:
|
| 264 |
+
model_to_use = selected_model
|
| 265 |
+
|
| 266 |
+
# Prepare payload for mean-diff endpoint
|
| 267 |
+
payload = {
|
| 268 |
+
"model_name": model_to_use,
|
| 269 |
+
"prompt_pair": [prompt1.strip(), prompt2.strip()],
|
| 270 |
+
"layer_type": component_type, # Nota: layer_type, no layer_key
|
| 271 |
+
"figure_format": "png"
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
progress(0.3, desc="🚀 Sending request to backend...")
|
| 275 |
+
|
| 276 |
+
# Call the FastAPI endpoint
|
| 277 |
+
response = requests.post(
|
| 278 |
+
f"{FASTAPI_BASE_URL}/visualize/mean-diff",
|
| 279 |
+
json=payload,
|
| 280 |
+
timeout=300 # 5 minutes timeout for model processing
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
progress(0.7, desc="📊 Processing visualization...")
|
| 284 |
+
|
| 285 |
+
if response.status_code == 200:
|
| 286 |
+
# Save the image temporarily
|
| 287 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
|
| 288 |
+
tmp_file.write(response.content)
|
| 289 |
+
image_path = tmp_file.name
|
| 290 |
+
|
| 291 |
+
progress(1.0, desc="✅ Visualization complete!")
|
| 292 |
+
|
| 293 |
+
# Success message
|
| 294 |
+
success_msg = f"""✅ **Mean Difference Visualization Generated Successfully!**
|
| 295 |
+
|
| 296 |
+
**Configuration:**
|
| 297 |
+
- Model: {model_to_use}
|
| 298 |
+
- Component: {component_type}
|
| 299 |
+
- Layers: All layers
|
| 300 |
+
- Prompts compared: {len(prompt1.split())} vs {len(prompt2.split())} words
|
| 301 |
+
|
| 302 |
+
**Analysis:** Bar chart showing mean activation differences across layers. Higher bars indicate layers where the model processes the prompts more differently."""
|
| 303 |
+
|
| 304 |
+
return image_path, success_msg, image_path
|
| 305 |
+
|
| 306 |
+
elif response.status_code == 422:
|
| 307 |
+
error_detail = response.json().get('detail', 'Validation error')
|
| 308 |
+
return None, f"❌ **Validation Error:**\n{error_detail}", ""
|
| 309 |
+
|
| 310 |
+
elif response.status_code == 500:
|
| 311 |
+
error_detail = response.json().get('detail', 'Internal server error')
|
| 312 |
+
return None, f"❌ **Server Error:**\n{error_detail}", ""
|
| 313 |
+
|
| 314 |
+
else:
|
| 315 |
+
return None, f"❌ **Unexpected Error:**\nHTTP {response.status_code}: {response.text}", ""
|
| 316 |
+
|
| 317 |
+
except requests.exceptions.Timeout:
|
| 318 |
+
return None, "❌ **Timeout Error:**\nThe request took too long. Try again.", ""
|
| 319 |
+
|
| 320 |
+
except requests.exceptions.ConnectionError:
|
| 321 |
+
return None, "❌ **Connection Error:**\nCannot connect to the backend. Make sure FastAPI server is running.", ""
|
| 322 |
+
|
| 323 |
+
except Exception as e:
|
| 324 |
+
logger.exception("Error in Mean Diff visualization")
|
| 325 |
+
return None, f"❌ **Unexpected Error:**\n{str(e)}", ""
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
###########################################
|
| 329 |
+
# Placeholder for heatmap visualization function
|
| 330 |
+
###########################################
|
| 331 |
+
|
| 332 |
+
def generate_heatmap_visualization(
|
| 333 |
+
selected_model: str,
|
| 334 |
+
custom_model: str,
|
| 335 |
+
scenario_key: str,
|
| 336 |
+
prompt1: str,
|
| 337 |
+
prompt2: str,
|
| 338 |
+
component_type: str,
|
| 339 |
+
layer_number: int,
|
| 340 |
+
progress=gr.Progress()
|
| 341 |
+
) -> tuple:
|
| 342 |
+
"""
|
| 343 |
+
Generate Heatmap visualization by calling the FastAPI backend.
|
| 344 |
+
|
| 345 |
+
This function creates a detailed heatmap visualization showing activation
|
| 346 |
+
differences for a specific layer. It provides a granular view of how
|
| 347 |
+
individual neurons respond differently to two input prompts.
|
| 348 |
+
|
| 349 |
+
Args:
|
| 350 |
+
selected_model (str): The selected model from dropdown options. Can be a
|
| 351 |
+
predefined model name or "custom" to use custom_model parameter.
|
| 352 |
+
custom_model (str): Custom HuggingFace model identifier. Only used when
|
| 353 |
+
selected_model is "custom".
|
| 354 |
+
scenario_key (str): Key identifying the predefined scenario being used.
|
| 355 |
+
Used for tracking and logging purposes.
|
| 356 |
+
prompt1 (str): First prompt to analyze. Should contain text that represents
|
| 357 |
+
one demographic or condition.
|
| 358 |
+
prompt2 (str): Second prompt to analyze. Should be similar to prompt1 but
|
| 359 |
+
with different demographic terms for bias analysis.
|
| 360 |
+
component_type (str): Type of neural network component to analyze. Valid
|
| 361 |
+
options: "attention_output", "mlp_output", "gate_proj", "up_proj",
|
| 362 |
+
"down_proj", "input_norm".
|
| 363 |
+
layer_number (int): Specific layer number to analyze (0-based indexing).
|
| 364 |
+
progress (gr.Progress, optional): Gradio progress indicator for user feedback.
|
| 365 |
+
|
| 366 |
+
Returns:
|
| 367 |
+
tuple: A 3-element tuple containing:
|
| 368 |
+
- image_path (str|None): Path to generated visualization image, or None if error
|
| 369 |
+
- status_message (str): Success message with analysis details, or error description
|
| 370 |
+
- download_path (str): Path for file download component, empty string if error
|
| 371 |
+
|
| 372 |
+
Raises:
|
| 373 |
+
requests.exceptions.Timeout: When backend request exceeds timeout limit
|
| 374 |
+
requests.exceptions.ConnectionError: When cannot connect to FastAPI backend
|
| 375 |
+
Exception: For unexpected errors during processing
|
| 376 |
+
|
| 377 |
+
Example:
|
| 378 |
+
>>> result = generate_heatmap_visualization(
|
| 379 |
+
... selected_model="meta-llama/Llama-3.2-1B",
|
| 380 |
+
... custom_model="",
|
| 381 |
+
... scenario_key="racial_bias_police",
|
| 382 |
+
... prompt1="The white man walked. The officer thought",
|
| 383 |
+
... prompt2="The Black man walked. The officer thought",
|
| 384 |
+
... component_type="attention_output",
|
| 385 |
+
... layer_number=7
|
| 386 |
+
... )
|
| 387 |
+
>>> image_path, message, download = result
|
| 388 |
+
|
| 389 |
+
Note:
|
| 390 |
+
- This function communicates with the FastAPI backend endpoint `/visualize/heatmap`
|
| 391 |
+
- The backend uses the OptipFair library to generate actual visualizations
|
| 392 |
+
- Heatmap analysis shows detailed activation patterns within a single layer
|
| 393 |
+
- Generated visualizations are temporarily stored and should be cleaned up
|
| 394 |
+
by the calling application
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
# Validate layer number
|
| 398 |
+
if layer_number < 0:
|
| 399 |
+
return None, "❌ Error: Layer number must be 0 or greater", ""
|
| 400 |
+
|
| 401 |
+
if layer_number > 100: # Reasonable sanity check
|
| 402 |
+
return None, "❌ Error: Layer number seems too large. Most models have fewer than 100 layers", ""
|
| 403 |
+
|
| 404 |
+
# Construct layer_key from validated components
|
| 405 |
+
layer_key = f"{component_type}_layer_{layer_number}"
|
| 406 |
+
|
| 407 |
+
# Validate component type
|
| 408 |
+
valid_components = ["attention_output", "mlp_output", "gate_proj", "up_proj", "down_proj", "input_norm"]
|
| 409 |
+
if component_type not in valid_components:
|
| 410 |
+
return None, f"❌ Error: Invalid component type '{component_type}'. Valid options: {', '.join(valid_components)}", ""
|
| 411 |
+
|
| 412 |
+
# Input validation - ensure required prompts are provided
|
| 413 |
+
if not prompt1.strip():
|
| 414 |
+
return None, "❌ Error: Prompt 1 cannot be empty", ""
|
| 415 |
+
|
| 416 |
+
if not prompt2.strip():
|
| 417 |
+
return None, "❌ Error: Prompt 2 cannot be empty", ""
|
| 418 |
+
|
| 419 |
+
if not layer_key.strip():
|
| 420 |
+
return None, "❌ Error: Layer key cannot be empty", ""
|
| 421 |
+
|
| 422 |
+
try:
|
| 423 |
+
# Update progress indicator for user feedback
|
| 424 |
+
progress(0.1, desc="🔄 Preparing request...")
|
| 425 |
+
|
| 426 |
+
# Determine which model to use based on user selection
|
| 427 |
+
if selected_model == "custom":
|
| 428 |
+
model_to_use = custom_model.strip()
|
| 429 |
+
if not model_to_use:
|
| 430 |
+
return None, "❌ Error: Please specify a custom model", ""
|
| 431 |
+
else:
|
| 432 |
+
model_to_use = selected_model
|
| 433 |
+
|
| 434 |
+
# Prepare request payload for FastAPI backend
|
| 435 |
+
payload = {
|
| 436 |
+
"model_name": model_to_use.strip(),
|
| 437 |
+
"prompt_pair": [prompt1.strip(), prompt2.strip()],
|
| 438 |
+
"layer_key": layer_key.strip(), # Note: uses layer_key like PCA, not layer_type
|
| 439 |
+
"figure_format": "png"
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
progress(0.3, desc="🚀 Sending request to backend...")
|
| 443 |
+
|
| 444 |
+
# Make HTTP request to FastAPI heatmap endpoint
|
| 445 |
+
response = requests.post(
|
| 446 |
+
f"{FASTAPI_BASE_URL}/visualize/heatmap",
|
| 447 |
+
json=payload,
|
| 448 |
+
timeout=300 # Extended timeout for model processing
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
progress(0.7, desc="📊 Processing visualization...")
|
| 452 |
+
|
| 453 |
+
# Handle successful response
|
| 454 |
+
if response.status_code == 200:
|
| 455 |
+
# Save binary image data to temporary file
|
| 456 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as tmp_file:
|
| 457 |
+
tmp_file.write(response.content)
|
| 458 |
+
image_path = tmp_file.name
|
| 459 |
+
|
| 460 |
+
progress(1.0, desc="✅ Visualization complete!")
|
| 461 |
+
|
| 462 |
+
# Create detailed success message for user
|
| 463 |
+
success_msg = f"""✅ **Heatmap Visualization Generated Successfully!**
|
| 464 |
+
|
| 465 |
+
**Configuration:**
|
| 466 |
+
- Model: {model_to_use}
|
| 467 |
+
- Component: {component_type}
|
| 468 |
+
- Layer: {layer_number}
|
| 469 |
+
- Prompts compared: {len(prompt1.split())} vs {len(prompt2.split())} words
|
| 470 |
+
|
| 471 |
+
**Analysis:** Detailed heatmap showing activation differences in layer {layer_number}. Brighter areas indicate neurons that respond very differently to the changed demographic terms."""
|
| 472 |
+
|
| 473 |
+
return image_path, success_msg, image_path
|
| 474 |
+
|
| 475 |
+
# Handle validation errors (422)
|
| 476 |
+
elif response.status_code == 422:
|
| 477 |
+
error_detail = response.json().get('detail', 'Validation error')
|
| 478 |
+
return None, f"❌ **Validation Error:**\n{error_detail}", ""
|
| 479 |
+
|
| 480 |
+
# Handle server errors (500)
|
| 481 |
+
elif response.status_code == 500:
|
| 482 |
+
error_detail = response.json().get('detail', 'Internal server error')
|
| 483 |
+
return None, f"❌ **Server Error:**\n{error_detail}", ""
|
| 484 |
+
|
| 485 |
+
# Handle other HTTP errors
|
| 486 |
+
else:
|
| 487 |
+
return None, f"❌ **Unexpected Error:**\nHTTP {response.status_code}: {response.text}", ""
|
| 488 |
+
|
| 489 |
+
# Handle specific request exceptions
|
| 490 |
+
except requests.exceptions.Timeout:
|
| 491 |
+
return None, "❌ **Timeout Error:**\nThe request took too long. This might happen with large models. Try again or use a different layer.", ""
|
| 492 |
+
|
| 493 |
+
except requests.exceptions.ConnectionError:
|
| 494 |
+
return None, "❌ **Connection Error:**\nCannot connect to the backend. Make sure the FastAPI server is running:\n`uvicorn main:app --reload`", ""
|
| 495 |
+
|
| 496 |
+
# Handle any other unexpected exceptions
|
| 497 |
+
except Exception as e:
|
| 498 |
+
logger.exception("Error in Heatmap visualization")
|
| 499 |
+
return None, f"❌ **Unexpected Error:**\n{str(e)}", ""
|
| 500 |
+
|
| 501 |
+
############################################
|
| 502 |
+
# Create the Gradio interface
|
| 503 |
+
############################################
|
| 504 |
+
# This function sets up the Gradio Blocks interface with tabs for PCA, Mean Difference, and Heatmap visualizations.
|
| 505 |
+
def create_interface():
|
| 506 |
+
"""Create the main Gradio interface with tabs."""
|
| 507 |
+
|
| 508 |
+
with gr.Blocks(
|
| 509 |
+
title="OptiPFair Bias Visualization Tool",
|
| 510 |
+
theme=gr.themes.Soft(),
|
| 511 |
+
css="""
|
| 512 |
+
.container { max-width: 1200px; margin: auto; }
|
| 513 |
+
.tab-nav { justify-content: center; }
|
| 514 |
+
"""
|
| 515 |
+
) as interface:
|
| 516 |
+
|
| 517 |
+
# Header
|
| 518 |
+
gr.Markdown("""
|
| 519 |
+
# 🔍 OptiPFair Bias Visualization Tool
|
| 520 |
+
|
| 521 |
+
Analyze potential biases in Large Language Models using advanced visualization techniques.
|
| 522 |
+
Built with [OptiPFair](https://github.com/peremartra/optipfair) library.
|
| 523 |
+
""")
|
| 524 |
+
|
| 525 |
+
# Health check section
|
| 526 |
+
with gr.Row():
|
| 527 |
+
with gr.Column(scale=2):
|
| 528 |
+
health_btn = gr.Button("🏥 Check Backend Status", variant="secondary")
|
| 529 |
+
with gr.Column(scale=3):
|
| 530 |
+
health_output = gr.Textbox(
|
| 531 |
+
label="Backend Status",
|
| 532 |
+
interactive=False,
|
| 533 |
+
value="Click 'Check Backend Status' to verify connection"
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
health_btn.click(health_check, outputs=health_output)
|
| 537 |
+
|
| 538 |
+
# Añadir después de health_btn.click(...) y antes de "# Main tabs"
|
| 539 |
+
with gr.Row():
|
| 540 |
+
with gr.Column(scale=2):
|
| 541 |
+
model_dropdown = gr.Dropdown(
|
| 542 |
+
choices=AVAILABLE_MODELS,
|
| 543 |
+
label="🤖 Select Model",
|
| 544 |
+
value=DEFAULT_MODEL
|
| 545 |
+
)
|
| 546 |
+
with gr.Column(scale=3):
|
| 547 |
+
custom_model_input = gr.Textbox(
|
| 548 |
+
label="Custom Model (HuggingFace ID)",
|
| 549 |
+
placeholder="e.g., microsoft/DialoGPT-large",
|
| 550 |
+
visible=False # Inicialmente oculto
|
| 551 |
+
)
|
| 552 |
+
|
| 553 |
+
# toggle Custom Model Input
|
| 554 |
+
def toggle_custom_model(selected_model):
|
| 555 |
+
if selected_model == "custom":
|
| 556 |
+
return gr.update(visible=True)
|
| 557 |
+
return gr.update(visible=False)
|
| 558 |
+
|
| 559 |
+
model_dropdown.change(
|
| 560 |
+
toggle_custom_model,
|
| 561 |
+
inputs=[model_dropdown],
|
| 562 |
+
outputs=[custom_model_input]
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
# Main tabs
|
| 566 |
+
with gr.Tabs() as tabs:
|
| 567 |
+
#################
|
| 568 |
+
# PCA Visualization Tab
|
| 569 |
+
##############
|
| 570 |
+
with gr.Tab("📊 PCA Analysis"):
|
| 571 |
+
gr.Markdown("### Principal Component Analysis of Model Activations")
|
| 572 |
+
gr.Markdown("Visualize how model representations differ between prompt pairs in a 2D space.")
|
| 573 |
+
|
| 574 |
+
with gr.Row():
|
| 575 |
+
# Left column: Configuration
|
| 576 |
+
with gr.Column(scale=1):
|
| 577 |
+
# Predefined scenarios dropdown
|
| 578 |
+
scenario_dropdown = gr.Dropdown(
|
| 579 |
+
choices=[(v["description"], k) for k, v in PREDEFINED_PROMPTS.items()],
|
| 580 |
+
label="📋 Predefined Scenarios",
|
| 581 |
+
value=list(PREDEFINED_PROMPTS.keys())[0]
|
| 582 |
+
)
|
| 583 |
+
|
| 584 |
+
# Prompt inputs
|
| 585 |
+
prompt1_input = gr.Textbox(
|
| 586 |
+
label="Prompt 1",
|
| 587 |
+
placeholder="Enter first prompt...",
|
| 588 |
+
lines=2,
|
| 589 |
+
value=PREDEFINED_PROMPTS[list(PREDEFINED_PROMPTS.keys())[0]]["prompt1"]
|
| 590 |
+
)
|
| 591 |
+
prompt2_input = gr.Textbox(
|
| 592 |
+
label="Prompt 2",
|
| 593 |
+
placeholder="Enter second prompt...",
|
| 594 |
+
lines=2,
|
| 595 |
+
value=PREDEFINED_PROMPTS[list(PREDEFINED_PROMPTS.keys())[0]]["prompt2"]
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
# Layer configuration - Component Type
|
| 599 |
+
component_dropdown = gr.Dropdown(
|
| 600 |
+
choices=[
|
| 601 |
+
("Attention Output", "attention_output"),
|
| 602 |
+
("MLP Output", "mlp_output"),
|
| 603 |
+
("Gate Projection", "gate_proj"),
|
| 604 |
+
("Up Projection", "up_proj"),
|
| 605 |
+
("Down Projection", "down_proj"),
|
| 606 |
+
("Input Normalization", "input_norm")
|
| 607 |
+
],
|
| 608 |
+
label="Component Type",
|
| 609 |
+
value="attention_output",
|
| 610 |
+
info="Type of neural network component to analyze"
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
+
# Layer configuration - Layer Number
|
| 614 |
+
layer_number = gr.Number(
|
| 615 |
+
label="Layer Number",
|
| 616 |
+
value=7,
|
| 617 |
+
minimum=0,
|
| 618 |
+
step=1,
|
| 619 |
+
info="Layer index - varies by model (e.g., 0-15 for small models)"
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
# Options
|
| 623 |
+
highlight_diff_checkbox = gr.Checkbox(
|
| 624 |
+
label="Highlight differing tokens",
|
| 625 |
+
value=True,
|
| 626 |
+
info="Highlight tokens that differ between prompts"
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
# Generate button
|
| 630 |
+
pca_btn = gr.Button("🔍 Generate PCA Visualization", variant="primary", size="lg")
|
| 631 |
+
|
| 632 |
+
# Status output
|
| 633 |
+
pca_status = gr.Textbox(
|
| 634 |
+
label="Status",
|
| 635 |
+
value="Configure parameters and click 'Generate PCA Visualization'",
|
| 636 |
+
interactive=False,
|
| 637 |
+
lines=8,
|
| 638 |
+
max_lines=10
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
# Right column: Results
|
| 642 |
+
with gr.Column(scale=1):
|
| 643 |
+
# Image display
|
| 644 |
+
pca_image = gr.Image(
|
| 645 |
+
label="PCA Visualization Result",
|
| 646 |
+
type="filepath",
|
| 647 |
+
show_label=True,
|
| 648 |
+
show_download_button=True,
|
| 649 |
+
interactive=False,
|
| 650 |
+
height=400
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
# Download button (additional)
|
| 654 |
+
download_pca = gr.File(
|
| 655 |
+
label="📥 Download Visualization",
|
| 656 |
+
visible=False
|
| 657 |
+
)
|
| 658 |
+
|
| 659 |
+
# Update prompts when scenario changes
|
| 660 |
+
scenario_dropdown.change(
|
| 661 |
+
load_predefined_prompts,
|
| 662 |
+
inputs=[scenario_dropdown],
|
| 663 |
+
outputs=[prompt1_input, prompt2_input]
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
# Connect the real PCA function
|
| 667 |
+
pca_btn.click(
|
| 668 |
+
generate_pca_visualization,
|
| 669 |
+
inputs=[
|
| 670 |
+
model_dropdown,
|
| 671 |
+
custom_model_input,
|
| 672 |
+
scenario_dropdown,
|
| 673 |
+
prompt1_input,
|
| 674 |
+
prompt2_input,
|
| 675 |
+
component_dropdown, # ← NUEVO: tipo de componente
|
| 676 |
+
layer_number, # ← NUEVO: número de capa
|
| 677 |
+
highlight_diff_checkbox
|
| 678 |
+
],
|
| 679 |
+
outputs=[pca_image, pca_status, download_pca],
|
| 680 |
+
show_progress=True
|
| 681 |
+
)
|
| 682 |
+
####################
|
| 683 |
+
# Mean Difference Tab
|
| 684 |
+
##################
|
| 685 |
+
with gr.Tab("📈 Mean Difference"):
|
| 686 |
+
gr.Markdown("### Mean Activation Differences Across Layers")
|
| 687 |
+
gr.Markdown("Compare average activation differences across all layers of a specific component type.")
|
| 688 |
+
|
| 689 |
+
with gr.Row():
|
| 690 |
+
# Left column: Configuration
|
| 691 |
+
with gr.Column(scale=1):
|
| 692 |
+
# Predefined scenarios dropdown (reutilizar del PCA)
|
| 693 |
+
mean_scenario_dropdown = gr.Dropdown(
|
| 694 |
+
choices=[(v["description"], k) for k, v in PREDEFINED_PROMPTS.items()],
|
| 695 |
+
label="📋 Predefined Scenarios",
|
| 696 |
+
value=list(PREDEFINED_PROMPTS.keys())[0]
|
| 697 |
+
)
|
| 698 |
+
|
| 699 |
+
# Prompt inputs
|
| 700 |
+
mean_prompt1_input = gr.Textbox(
|
| 701 |
+
label="Prompt 1",
|
| 702 |
+
placeholder="Enter first prompt...",
|
| 703 |
+
lines=2,
|
| 704 |
+
value=PREDEFINED_PROMPTS[list(PREDEFINED_PROMPTS.keys())[0]]["prompt1"]
|
| 705 |
+
)
|
| 706 |
+
mean_prompt2_input = gr.Textbox(
|
| 707 |
+
label="Prompt 2",
|
| 708 |
+
placeholder="Enter second prompt...",
|
| 709 |
+
lines=2,
|
| 710 |
+
value=PREDEFINED_PROMPTS[list(PREDEFINED_PROMPTS.keys())[0]]["prompt2"]
|
| 711 |
+
)
|
| 712 |
+
|
| 713 |
+
# Component type configuration
|
| 714 |
+
mean_component_dropdown = gr.Dropdown(
|
| 715 |
+
choices=[
|
| 716 |
+
("Attention Output", "attention_output"),
|
| 717 |
+
("MLP Output", "mlp_output"),
|
| 718 |
+
("Gate Projection", "gate_proj"),
|
| 719 |
+
("Up Projection", "up_proj"),
|
| 720 |
+
("Down Projection", "down_proj"),
|
| 721 |
+
("Input Normalization", "input_norm")
|
| 722 |
+
],
|
| 723 |
+
label="Component Type",
|
| 724 |
+
value="attention_output",
|
| 725 |
+
info="Type of neural network component to analyze"
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
|
| 729 |
+
# Generate button
|
| 730 |
+
mean_diff_btn = gr.Button("📈 Generate Mean Difference Visualization", variant="primary", size="lg")
|
| 731 |
+
|
| 732 |
+
# Status output
|
| 733 |
+
mean_diff_status = gr.Textbox(
|
| 734 |
+
label="Status",
|
| 735 |
+
value="Configure parameters and click 'Generate Mean Difference Visualization'",
|
| 736 |
+
interactive=False,
|
| 737 |
+
lines=8,
|
| 738 |
+
max_lines=10
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
# Right column: Results
|
| 742 |
+
with gr.Column(scale=1):
|
| 743 |
+
# Image display
|
| 744 |
+
mean_diff_image = gr.Image(
|
| 745 |
+
label="Mean Difference Visualization Result",
|
| 746 |
+
type="filepath",
|
| 747 |
+
show_label=True,
|
| 748 |
+
show_download_button=True,
|
| 749 |
+
interactive=False,
|
| 750 |
+
height=400
|
| 751 |
+
)
|
| 752 |
+
|
| 753 |
+
# Download button (additional)
|
| 754 |
+
download_mean_diff = gr.File(
|
| 755 |
+
label="📥 Download Visualization",
|
| 756 |
+
visible=False
|
| 757 |
+
)
|
| 758 |
+
# Update prompts when scenario changes for Mean Difference
|
| 759 |
+
mean_scenario_dropdown.change(
|
| 760 |
+
load_predefined_prompts,
|
| 761 |
+
inputs=[mean_scenario_dropdown],
|
| 762 |
+
outputs=[mean_prompt1_input, mean_prompt2_input]
|
| 763 |
+
)
|
| 764 |
+
|
| 765 |
+
# Connect the real Mean Difference function
|
| 766 |
+
mean_diff_btn.click(
|
| 767 |
+
generate_mean_diff_visualization,
|
| 768 |
+
inputs=[
|
| 769 |
+
model_dropdown, # Reutilizamos el selector de modelo global
|
| 770 |
+
custom_model_input, # Reutilizamos el campo de modelo custom global
|
| 771 |
+
mean_scenario_dropdown,
|
| 772 |
+
mean_prompt1_input,
|
| 773 |
+
mean_prompt2_input,
|
| 774 |
+
mean_component_dropdown,
|
| 775 |
+
],
|
| 776 |
+
outputs=[mean_diff_image, mean_diff_status, download_mean_diff],
|
| 777 |
+
show_progress=True
|
| 778 |
+
)
|
| 779 |
+
###################
|
| 780 |
+
# Heatmap Tab
|
| 781 |
+
##################
|
| 782 |
+
with gr.Tab("🔥 Heatmap"):
|
| 783 |
+
gr.Markdown("### Activation Difference Heatmap")
|
| 784 |
+
gr.Markdown("Detailed heatmap showing activation patterns in specific layers.")
|
| 785 |
+
|
| 786 |
+
with gr.Row():
|
| 787 |
+
# Left column: Configuration
|
| 788 |
+
with gr.Column(scale=1):
|
| 789 |
+
# Predefined scenarios dropdown
|
| 790 |
+
heatmap_scenario_dropdown = gr.Dropdown(
|
| 791 |
+
choices=[(v["description"], k) for k, v in PREDEFINED_PROMPTS.items()],
|
| 792 |
+
label="📋 Predefined Scenarios",
|
| 793 |
+
value=list(PREDEFINED_PROMPTS.keys())[0]
|
| 794 |
+
)
|
| 795 |
+
|
| 796 |
+
# Prompt inputs
|
| 797 |
+
heatmap_prompt1_input = gr.Textbox(
|
| 798 |
+
label="Prompt 1",
|
| 799 |
+
placeholder="Enter first prompt...",
|
| 800 |
+
lines=2,
|
| 801 |
+
value=PREDEFINED_PROMPTS[list(PREDEFINED_PROMPTS.keys())[0]]["prompt1"]
|
| 802 |
+
)
|
| 803 |
+
heatmap_prompt2_input = gr.Textbox(
|
| 804 |
+
label="Prompt 2",
|
| 805 |
+
placeholder="Enter second prompt...",
|
| 806 |
+
lines=2,
|
| 807 |
+
value=PREDEFINED_PROMPTS[list(PREDEFINED_PROMPTS.keys())[0]]["prompt2"]
|
| 808 |
+
)
|
| 809 |
+
|
| 810 |
+
# Component type configuration
|
| 811 |
+
heatmap_component_dropdown = gr.Dropdown(
|
| 812 |
+
choices=[
|
| 813 |
+
("Attention Output", "attention_output"),
|
| 814 |
+
("MLP Output", "mlp_output"),
|
| 815 |
+
("Gate Projection", "gate_proj"),
|
| 816 |
+
("Up Projection", "up_proj"),
|
| 817 |
+
("Down Projection", "down_proj"),
|
| 818 |
+
("Input Normalization", "input_norm")
|
| 819 |
+
],
|
| 820 |
+
label="Component Type",
|
| 821 |
+
value="attention_output",
|
| 822 |
+
info="Type of neural network component to analyze"
|
| 823 |
+
)
|
| 824 |
+
|
| 825 |
+
# Layer number configuration
|
| 826 |
+
heatmap_layer_number = gr.Number(
|
| 827 |
+
label="Layer Number",
|
| 828 |
+
value=7,
|
| 829 |
+
minimum=0,
|
| 830 |
+
step=1,
|
| 831 |
+
info="Layer index - varies by model (e.g., 0-15 for small models)"
|
| 832 |
+
)
|
| 833 |
+
|
| 834 |
+
# Generate button
|
| 835 |
+
heatmap_btn = gr.Button("🔥 Generate Heatmap Visualization", variant="primary", size="lg")
|
| 836 |
+
|
| 837 |
+
# Status output
|
| 838 |
+
heatmap_status = gr.Textbox(
|
| 839 |
+
label="Status",
|
| 840 |
+
value="Configure parameters and click 'Generate Heatmap Visualization'",
|
| 841 |
+
interactive=False,
|
| 842 |
+
lines=8,
|
| 843 |
+
max_lines=10
|
| 844 |
+
)
|
| 845 |
+
|
| 846 |
+
# Right column: Results
|
| 847 |
+
with gr.Column(scale=1):
|
| 848 |
+
# Image display
|
| 849 |
+
heatmap_image = gr.Image(
|
| 850 |
+
label="Heatmap Visualization Result",
|
| 851 |
+
type="filepath",
|
| 852 |
+
show_label=True,
|
| 853 |
+
show_download_button=True,
|
| 854 |
+
interactive=False,
|
| 855 |
+
height=400
|
| 856 |
+
)
|
| 857 |
+
|
| 858 |
+
# Download button (additional)
|
| 859 |
+
download_heatmap = gr.File(
|
| 860 |
+
label="📥 Download Visualization",
|
| 861 |
+
visible=False
|
| 862 |
+
)
|
| 863 |
+
# Update prompts when scenario changes for Heatmap
|
| 864 |
+
heatmap_scenario_dropdown.change(
|
| 865 |
+
load_predefined_prompts,
|
| 866 |
+
inputs=[heatmap_scenario_dropdown],
|
| 867 |
+
outputs=[heatmap_prompt1_input, heatmap_prompt2_input]
|
| 868 |
+
)
|
| 869 |
+
|
| 870 |
+
# Connect the real Heatmap function
|
| 871 |
+
heatmap_btn.click(
|
| 872 |
+
generate_heatmap_visualization,
|
| 873 |
+
inputs=[
|
| 874 |
+
model_dropdown, # Reutilizamos el selector de modelo global
|
| 875 |
+
custom_model_input, # Reutilizamos el campo de modelo custom global
|
| 876 |
+
heatmap_scenario_dropdown,
|
| 877 |
+
heatmap_prompt1_input,
|
| 878 |
+
heatmap_prompt2_input,
|
| 879 |
+
heatmap_component_dropdown,
|
| 880 |
+
heatmap_layer_number
|
| 881 |
+
],
|
| 882 |
+
outputs=[heatmap_image, heatmap_status, download_heatmap],
|
| 883 |
+
show_progress=True
|
| 884 |
+
)
|
| 885 |
+
# Footer
|
| 886 |
+
gr.Markdown("""
|
| 887 |
+
---
|
| 888 |
+
**📚 How to use:**
|
| 889 |
+
1. Check that the backend is running
|
| 890 |
+
2. Select a predefined scenario or enter custom prompts
|
| 891 |
+
3. Configure layer settings
|
| 892 |
+
4. Generate visualizations to analyze potential biases
|
| 893 |
+
|
| 894 |
+
**🔗 Resources:** [OptiPFair Documentation](https://github.com/peremartra/optipfair) |
|
| 895 |
+
""")
|
| 896 |
+
|
| 897 |
+
return interface
|
| 898 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.115.12
|
| 2 |
+
uvicorn==0.34.2
|
| 3 |
+
gradio==5.29.1
|
| 4 |
+
requests==2.32.3
|
| 5 |
+
optipfair[viz]==0.1.3
|
| 6 |
+
torch==2.7.0
|
| 7 |
+
transformers==4.51.3
|
| 8 |
+
matplotlib==3.10.3
|
| 9 |
+
numpy==1.26.4
|
| 10 |
+
Pillow==11.2.1
|
routers/__pycache__/visualize.cpython-312.pyc
ADDED
|
Binary file (5.4 kB). View file
|
|
|
routers/visualize.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# routers/visualize.py
|
| 2 |
+
import os
|
| 3 |
+
import logging
|
| 4 |
+
from fastapi import APIRouter, HTTPException
|
| 5 |
+
from fastapi.responses import FileResponse
|
| 6 |
+
from schemas.visualize import (
|
| 7 |
+
VisualizePCARequest,
|
| 8 |
+
VisualizeMeanDiffRequest,
|
| 9 |
+
VisualizeHeatmapRequest,
|
| 10 |
+
)
|
| 11 |
+
from utils.visualize_pca import (
|
| 12 |
+
run_visualize_pca,
|
| 13 |
+
run_visualize_mean_diff,
|
| 14 |
+
run_visualize_heatmap,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
logger.setLevel(logging.INFO)
|
| 19 |
+
|
| 20 |
+
router = APIRouter(
|
| 21 |
+
prefix="/visualize",
|
| 22 |
+
tags=["visualization"],
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
@router.post(
|
| 26 |
+
"/pca",
|
| 27 |
+
summary="Generates and returns the PCA visualization of activations",
|
| 28 |
+
response_class=FileResponse,
|
| 29 |
+
)
|
| 30 |
+
async def visualize_pca_endpoint(req: VisualizePCARequest):
|
| 31 |
+
"""
|
| 32 |
+
Receives the parameters, calls the wrapper for optipfair.bias.visualize_pca,
|
| 33 |
+
and returns the resulting PNG/SVG image.
|
| 34 |
+
"""
|
| 35 |
+
# 1. Execute the image generation and get the file path
|
| 36 |
+
try:
|
| 37 |
+
filepath = run_visualize_pca(
|
| 38 |
+
model_name=req.model_name,
|
| 39 |
+
prompt_pair=tuple(req.prompt_pair),
|
| 40 |
+
layer_key=req.layer_key,
|
| 41 |
+
highlight_diff=req.highlight_diff,
|
| 42 |
+
output_dir=req.output_dir,
|
| 43 |
+
figure_format=req.figure_format,
|
| 44 |
+
pair_index=req.pair_index,
|
| 45 |
+
)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
# Log the full trace for debugging
|
| 48 |
+
logger.exception("❌ Error in visualize_pca_endpoint")
|
| 49 |
+
# And return the message to the client
|
| 50 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 51 |
+
# 2. Verify that the file exists
|
| 52 |
+
if not filepath or not os.path.isfile(filepath):
|
| 53 |
+
raise HTTPException(status_code=500, detail="Image file not found after generation")
|
| 54 |
+
|
| 55 |
+
# 3. Return the file directly to the client
|
| 56 |
+
return FileResponse(
|
| 57 |
+
path=filepath,
|
| 58 |
+
media_type=f"image/{req.figure_format}",
|
| 59 |
+
filename=os.path.basename(filepath),
|
| 60 |
+
headers={"Content-Disposition": f'inline; filename="{os.path.basename(filepath)}"'},
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
@router.post("/mean-diff", response_class=FileResponse)
|
| 64 |
+
async def visualize_mean_diff_endpoint(req: VisualizeMeanDiffRequest):
|
| 65 |
+
"""
|
| 66 |
+
Receives the parameters, calls the wrapper for optipfair.bias.visualize_mean_differences,
|
| 67 |
+
and returns the resulting PNG/SVG image.
|
| 68 |
+
"""
|
| 69 |
+
try:
|
| 70 |
+
filepath = run_visualize_mean_diff(
|
| 71 |
+
model_name=req.model_name,
|
| 72 |
+
prompt_pair=tuple(req.prompt_pair),
|
| 73 |
+
layer_type=req.layer_type, # Changed from layer_key to layer_type
|
| 74 |
+
figure_format=req.figure_format,
|
| 75 |
+
output_dir=req.output_dir,
|
| 76 |
+
pair_index=req.pair_index,
|
| 77 |
+
)
|
| 78 |
+
except Exception as e:
|
| 79 |
+
# Log the full trace for debugging
|
| 80 |
+
logger.exception("Error in mean-diff endpoint")
|
| 81 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 82 |
+
|
| 83 |
+
# Verify that the file exists
|
| 84 |
+
if not os.path.isfile(filepath):
|
| 85 |
+
raise HTTPException(status_code=500, detail="Image file not found")
|
| 86 |
+
|
| 87 |
+
# Return the file directly to the client
|
| 88 |
+
return FileResponse(
|
| 89 |
+
path=filepath,
|
| 90 |
+
media_type=f"image/{req.figure_format}",
|
| 91 |
+
filename=os.path.basename(filepath),
|
| 92 |
+
headers={"Content-Disposition": f'inline; filename="{os.path.basename(filepath)}"'}
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
@router.post("/heatmap", response_class=FileResponse)
|
| 96 |
+
async def visualize_heatmap_endpoint(req: VisualizeHeatmapRequest):
|
| 97 |
+
"""
|
| 98 |
+
Receives the parameters, calls the wrapper for optipfair.bias.visualize_heatmap,
|
| 99 |
+
and returns the resulting PNG/SVG image.
|
| 100 |
+
"""
|
| 101 |
+
try:
|
| 102 |
+
filepath = run_visualize_heatmap(
|
| 103 |
+
model_name=req.model_name,
|
| 104 |
+
prompt_pair=tuple(req.prompt_pair),
|
| 105 |
+
layer_key=req.layer_key,
|
| 106 |
+
figure_format=req.figure_format,
|
| 107 |
+
output_dir=req.output_dir,
|
| 108 |
+
)
|
| 109 |
+
except Exception as e:
|
| 110 |
+
# Log the full trace for debugging
|
| 111 |
+
logger.exception("Error in heatmap endpoint")
|
| 112 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 113 |
+
|
| 114 |
+
# Verify that the file exists
|
| 115 |
+
if not os.path.isfile(filepath):
|
| 116 |
+
raise HTTPException(status_code=500, detail="Image file not found")
|
| 117 |
+
|
| 118 |
+
# Return the file directly to the client
|
| 119 |
+
return FileResponse(
|
| 120 |
+
path=filepath,
|
| 121 |
+
media_type=f"image/{req.figure_format}",
|
| 122 |
+
filename=os.path.basename(filepath),
|
| 123 |
+
headers={"Content-Disposition": f'inline; filename="{os.path.basename(filepath)}"'}
|
| 124 |
+
)
|
schemas/__pycache__/visualize.cpython-312.pyc
ADDED
|
Binary file (2.54 kB). View file
|
|
|
schemas/visualize.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# schemas/visualize.py
|
| 2 |
+
from pydantic import BaseModel, field_validator
|
| 3 |
+
from typing import List, Optional, Union, Tuple
|
| 4 |
+
|
| 5 |
+
class VisualizePCARequest(BaseModel):
|
| 6 |
+
"""
|
| 7 |
+
Schema for the /visualize-pca endpoint.
|
| 8 |
+
"""
|
| 9 |
+
model_name: str
|
| 10 |
+
prompt_pair: List[str]
|
| 11 |
+
layer_key: str
|
| 12 |
+
highlight_diff: bool = True
|
| 13 |
+
figure_format: str = "png"
|
| 14 |
+
pair_index: int = 0
|
| 15 |
+
output_dir: Optional[str] = None
|
| 16 |
+
|
| 17 |
+
@field_validator("prompt_pair")
|
| 18 |
+
def must_be_two_prompts(cls, v):
|
| 19 |
+
if len(v) != 2:
|
| 20 |
+
raise ValueError("prompt_pair must be a list of exactly two strings")
|
| 21 |
+
return v
|
| 22 |
+
|
| 23 |
+
class VisualizeMeanDiffRequest(BaseModel):
|
| 24 |
+
model_name: str
|
| 25 |
+
prompt_pair: List[str]
|
| 26 |
+
layer_type: str # Changed from layer_key to layer_type
|
| 27 |
+
figure_format: str = "png"
|
| 28 |
+
output_dir: Optional[str] = None
|
| 29 |
+
pair_index: int = 0
|
| 30 |
+
|
| 31 |
+
@field_validator("prompt_pair")
|
| 32 |
+
def must_be_two_prompts(cls, v):
|
| 33 |
+
if len(v) != 2:
|
| 34 |
+
raise ValueError("prompt_pair must be a list of exactly two strings")
|
| 35 |
+
return v
|
| 36 |
+
|
| 37 |
+
class VisualizeHeatmapRequest(BaseModel):
|
| 38 |
+
"""
|
| 39 |
+
Schema for the /visualize/heatmap endpoint.
|
| 40 |
+
"""
|
| 41 |
+
model_name: str
|
| 42 |
+
prompt_pair: List[str]
|
| 43 |
+
layer_key: str
|
| 44 |
+
figure_format: str = "png"
|
| 45 |
+
output_dir: Optional[str] = None
|
| 46 |
+
|
| 47 |
+
@field_validator("prompt_pair")
|
| 48 |
+
def must_be_two_prompts(cls, v):
|
| 49 |
+
if len(v) != 2:
|
| 50 |
+
raise ValueError("prompt_pair must be a list of exactly two strings")
|
| 51 |
+
return v
|
utils/__pycache__/visualize_pca.cpython-312.pyc
ADDED
|
Binary file (6.65 kB). View file
|
|
|
utils/visualize_pca.py
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# utils/visualize_pca.py
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import logging
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
from typing import Tuple, Optional, Union, List
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from optipfair.bias import visualize_pca, visualize_mean_differences, visualize_heatmap
|
| 10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 11 |
+
|
| 12 |
+
import matplotlib
|
| 13 |
+
matplotlib.use('Agg') # Use 'Agg' backend for non-GUI environments
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
logger.setLevel(logging.INFO)
|
| 17 |
+
|
| 18 |
+
@lru_cache(maxsize=None)
|
| 19 |
+
def load_model_tokenizer(model_name: str):
|
| 20 |
+
"""
|
| 21 |
+
Loads the model and tokenizer on the CPU once and caches the result.
|
| 22 |
+
"""
|
| 23 |
+
logger.info(f"Loading model and tokenizer for '{model_name}'")
|
| 24 |
+
|
| 25 |
+
# Device selection: MPS (Apple Silicon) > CUDA > CPU
|
| 26 |
+
if torch.cuda.is_available():
|
| 27 |
+
device = torch.device("cuda")
|
| 28 |
+
elif torch.mps.is_available():
|
| 29 |
+
device = torch.device("mps")
|
| 30 |
+
else:
|
| 31 |
+
device = torch.device("cpu")
|
| 32 |
+
logger.info(f"Using device: {device}")
|
| 33 |
+
|
| 34 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
|
| 37 |
+
model = model.to(device)
|
| 38 |
+
|
| 39 |
+
logger.info(f"Model loaded on device: {next(model.parameters()).device}")
|
| 40 |
+
|
| 41 |
+
return model, tokenizer
|
| 42 |
+
|
| 43 |
+
def run_visualize_pca(
|
| 44 |
+
model_name: str,
|
| 45 |
+
prompt_pair: Tuple[str, str],
|
| 46 |
+
layer_key: str,
|
| 47 |
+
highlight_diff: bool = True,
|
| 48 |
+
output_dir: Optional[str] = None,
|
| 49 |
+
figure_format: str = "png",
|
| 50 |
+
pair_index: int = 0,
|
| 51 |
+
) -> str:
|
| 52 |
+
if output_dir is None:
|
| 53 |
+
output_dir = tempfile.mkdtemp(prefix="optipfair_pca_")
|
| 54 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 55 |
+
|
| 56 |
+
model, tokenizer = load_model_tokenizer(model_name)
|
| 57 |
+
|
| 58 |
+
visualize_pca(
|
| 59 |
+
model=model,
|
| 60 |
+
tokenizer=tokenizer,
|
| 61 |
+
prompt_pair=prompt_pair,
|
| 62 |
+
layer_key=layer_key,
|
| 63 |
+
highlight_diff=highlight_diff,
|
| 64 |
+
output_dir=output_dir,
|
| 65 |
+
figure_format=figure_format,
|
| 66 |
+
pair_index=pair_index
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
layer_parts = layer_key.split("_")
|
| 70 |
+
layer_type = "_".join(layer_parts[:-1])
|
| 71 |
+
layer_num = layer_parts[-1]
|
| 72 |
+
filename = build_visualization_filename(
|
| 73 |
+
vis_type="pca",
|
| 74 |
+
layer_type=layer_type,
|
| 75 |
+
layer_num=layer_num,
|
| 76 |
+
pair_index=pair_index,
|
| 77 |
+
figure_format=figure_format
|
| 78 |
+
)
|
| 79 |
+
filepath = os.path.join(output_dir, filename)
|
| 80 |
+
|
| 81 |
+
if not os.path.isfile(filepath):
|
| 82 |
+
raise FileNotFoundError(f"Expected image file not found: {filepath}")
|
| 83 |
+
|
| 84 |
+
logger.info(f"PCA image saved at {filepath}")
|
| 85 |
+
return filepath
|
| 86 |
+
|
| 87 |
+
def run_visualize_mean_diff(
|
| 88 |
+
model_name: str,
|
| 89 |
+
prompt_pair: Tuple[str, str],
|
| 90 |
+
layer_type: str, # Changed from layer_key to layer_type
|
| 91 |
+
figure_format: str = "png",
|
| 92 |
+
output_dir: Optional[str] = None,
|
| 93 |
+
pair_index: int = 0,
|
| 94 |
+
) -> str:
|
| 95 |
+
if output_dir is None:
|
| 96 |
+
output_dir = tempfile.mkdtemp(prefix="optipfair_mean_diff_")
|
| 97 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 98 |
+
|
| 99 |
+
model, tokenizer = load_model_tokenizer(model_name)
|
| 100 |
+
|
| 101 |
+
visualize_mean_differences(
|
| 102 |
+
model=model,
|
| 103 |
+
tokenizer=tokenizer,
|
| 104 |
+
prompt_pair=prompt_pair,
|
| 105 |
+
layer_type=layer_type,
|
| 106 |
+
layers="all", # By default, show all layers
|
| 107 |
+
output_dir=output_dir,
|
| 108 |
+
figure_format=figure_format,
|
| 109 |
+
pair_index=pair_index
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
filename = build_visualization_filename(
|
| 113 |
+
vis_type="mean_diff",
|
| 114 |
+
layer_type=layer_type,
|
| 115 |
+
pair_index=pair_index,
|
| 116 |
+
figure_format=figure_format
|
| 117 |
+
)
|
| 118 |
+
filepath = os.path.join(output_dir, filename)
|
| 119 |
+
if not os.path.isfile(filepath):
|
| 120 |
+
raise FileNotFoundError(f"Expected image file not found: {filepath}")
|
| 121 |
+
logger.info(f"Mean-diff image saved at {filepath}")
|
| 122 |
+
return filepath
|
| 123 |
+
|
| 124 |
+
def run_visualize_heatmap(
|
| 125 |
+
model_name: str,
|
| 126 |
+
prompt_pair: Tuple[str, str],
|
| 127 |
+
layer_key: str,
|
| 128 |
+
figure_format: str = "png",
|
| 129 |
+
output_dir: Optional[str] = None,
|
| 130 |
+
pair_index: int = 0,
|
| 131 |
+
) -> str:
|
| 132 |
+
if output_dir is None:
|
| 133 |
+
output_dir = tempfile.mkdtemp(prefix="optipfair_heatmap_")
|
| 134 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 135 |
+
|
| 136 |
+
model, tokenizer = load_model_tokenizer(model_name)
|
| 137 |
+
|
| 138 |
+
visualize_heatmap(
|
| 139 |
+
model=model,
|
| 140 |
+
tokenizer=tokenizer,
|
| 141 |
+
prompt_pair=prompt_pair,
|
| 142 |
+
layer_key=layer_key,
|
| 143 |
+
output_dir=output_dir,
|
| 144 |
+
figure_format=figure_format,
|
| 145 |
+
pair_index=pair_index
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
parts = layer_key.split("_")
|
| 149 |
+
layer_type = "_".join(parts[:-1])
|
| 150 |
+
layer_num = parts[-1]
|
| 151 |
+
filename = build_visualization_filename(
|
| 152 |
+
vis_type="heatmap",
|
| 153 |
+
layer_type=layer_type,
|
| 154 |
+
layer_num=layer_num,
|
| 155 |
+
pair_index=pair_index,
|
| 156 |
+
figure_format=figure_format
|
| 157 |
+
)
|
| 158 |
+
filepath = os.path.join(output_dir, filename)
|
| 159 |
+
if not os.path.isfile(filepath):
|
| 160 |
+
raise FileNotFoundError(f"Expected image file not found: {filepath}")
|
| 161 |
+
logger.info(f"Heatmap image saved at {filepath}")
|
| 162 |
+
return filepath
|
| 163 |
+
|
| 164 |
+
def build_visualization_filename(
|
| 165 |
+
vis_type: str,
|
| 166 |
+
layer_type: str,
|
| 167 |
+
layer_num: str = None,
|
| 168 |
+
layers: Union[str, List[int]] = None,
|
| 169 |
+
pair_index: int = 0,
|
| 170 |
+
figure_format: str = "png"
|
| 171 |
+
) -> str:
|
| 172 |
+
"""
|
| 173 |
+
Builds the filename for any visualization.
|
| 174 |
+
"""
|
| 175 |
+
if vis_type == "mean_diff":
|
| 176 |
+
# The visualize_mean_differences function does not include the layer number in the filename
|
| 177 |
+
return f"mean_diff_{layer_type}_pair{pair_index}.{figure_format}"
|
| 178 |
+
elif vis_type in ("pca", "heatmap"):
|
| 179 |
+
return f"{vis_type}_{layer_type}_{layer_num}_pair{pair_index}.{figure_format}"
|
| 180 |
+
else:
|
| 181 |
+
raise ValueError(f"Unknown visualization type: {vis_type}")
|
| 182 |
+
|