Spaces:
Runtime error
Runtime error
Quentin Gallouédec
commited on
Commit
·
a3eda6f
1
Parent(s):
1a011cd
handle video not in repo and count the number of models
Browse files
app.py
CHANGED
|
@@ -180,8 +180,12 @@ def refresh_video(df, env_id):
|
|
| 180 |
model_id = env_df.iloc[0]["model_id"]
|
| 181 |
model_sha = env_df.iloc[0]["model_sha"]
|
| 182 |
repo_id = f"{user_id}/{model_id}"
|
| 183 |
-
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
else:
|
| 186 |
return None
|
| 187 |
|
|
@@ -211,6 +215,9 @@ This leaderboard is quite empty... 😢
|
|
| 211 |
Be the first to submit your model!
|
| 212 |
Check the tab "🚀 Getting my agent evaluated"
|
| 213 |
"""
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
|
| 216 |
css = """
|
|
@@ -228,25 +235,27 @@ h3 {
|
|
| 228 |
|
| 229 |
|
| 230 |
def update_globals():
|
| 231 |
-
global dataframes, winner_texts, video_pathes, df
|
| 232 |
df = get_leaderboard_df()
|
| 233 |
all_env_ids = [env_id for env_ids in ALL_ENV_IDS.values() for env_id in env_ids]
|
| 234 |
dataframes = {env_id: format_df(select_env(df, env_id)) for env_id in all_env_ids}
|
| 235 |
winner_texts = {env_id: refresh_winner(df, env_id) for env_id in all_env_ids}
|
| 236 |
video_pathes = {env_id: refresh_video(df, env_id) for env_id in all_env_ids}
|
|
|
|
| 237 |
|
| 238 |
|
| 239 |
update_globals()
|
| 240 |
|
| 241 |
|
| 242 |
def refresh():
|
| 243 |
-
global dataframes, winner_texts,
|
| 244 |
-
return list(dataframes.values()) + list(winner_texts.values()) + [
|
| 245 |
|
| 246 |
|
| 247 |
with gr.Blocks(css=css) as demo:
|
| 248 |
with open("texts/heading.md") as fp:
|
| 249 |
gr.Markdown(fp.read())
|
|
|
|
| 250 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 251 |
with gr.TabItem("🏅 Leaderboard"):
|
| 252 |
all_gr_dfs = {}
|
|
@@ -295,7 +304,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 295 |
with open("texts/about.md") as fp:
|
| 296 |
gr.Markdown(fp.read())
|
| 297 |
|
| 298 |
-
demo.load(refresh, outputs=list(all_gr_dfs.values()) + list(all_gr_winners.values()))
|
| 299 |
|
| 300 |
scheduler = BackgroundScheduler()
|
| 301 |
scheduler.add_job(func=backend_routine, trigger="interval", seconds=REFRESH_RATE, max_instances=1)
|
|
|
|
| 180 |
model_id = env_df.iloc[0]["model_id"]
|
| 181 |
model_sha = env_df.iloc[0]["model_sha"]
|
| 182 |
repo_id = f"{user_id}/{model_id}"
|
| 183 |
+
try:
|
| 184 |
+
video_path = API.hf_hub_download(repo_id=repo_id, filename="replay.mp4", revision=model_sha, repo_type="model")
|
| 185 |
+
return video_path
|
| 186 |
+
except Exception as e:
|
| 187 |
+
logger.error(f"Error while downloading video for {env_id}: {e}")
|
| 188 |
+
return None
|
| 189 |
else:
|
| 190 |
return None
|
| 191 |
|
|
|
|
| 215 |
Be the first to submit your model!
|
| 216 |
Check the tab "🚀 Getting my agent evaluated"
|
| 217 |
"""
|
| 218 |
+
|
| 219 |
+
def refresh_num_models(df):
|
| 220 |
+
return f"The leaderboard currently contains {len(df):,} models."
|
| 221 |
|
| 222 |
|
| 223 |
css = """
|
|
|
|
| 235 |
|
| 236 |
|
| 237 |
def update_globals():
|
| 238 |
+
global dataframes, winner_texts, video_pathes, num_models_str, df
|
| 239 |
df = get_leaderboard_df()
|
| 240 |
all_env_ids = [env_id for env_ids in ALL_ENV_IDS.values() for env_id in env_ids]
|
| 241 |
dataframes = {env_id: format_df(select_env(df, env_id)) for env_id in all_env_ids}
|
| 242 |
winner_texts = {env_id: refresh_winner(df, env_id) for env_id in all_env_ids}
|
| 243 |
video_pathes = {env_id: refresh_video(df, env_id) for env_id in all_env_ids}
|
| 244 |
+
num_models_str = refresh_num_models(df)
|
| 245 |
|
| 246 |
|
| 247 |
update_globals()
|
| 248 |
|
| 249 |
|
| 250 |
def refresh():
|
| 251 |
+
global dataframes, winner_texts, num_models_str
|
| 252 |
+
return list(dataframes.values()) + list(winner_texts.values()) + [num_models_str]
|
| 253 |
|
| 254 |
|
| 255 |
with gr.Blocks(css=css) as demo:
|
| 256 |
with open("texts/heading.md") as fp:
|
| 257 |
gr.Markdown(fp.read())
|
| 258 |
+
num_models_md = gr.Markdown()
|
| 259 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 260 |
with gr.TabItem("🏅 Leaderboard"):
|
| 261 |
all_gr_dfs = {}
|
|
|
|
| 304 |
with open("texts/about.md") as fp:
|
| 305 |
gr.Markdown(fp.read())
|
| 306 |
|
| 307 |
+
demo.load(refresh, outputs=list(all_gr_dfs.values()) + list(all_gr_winners.values()) + [num_models_md])
|
| 308 |
|
| 309 |
scheduler = BackgroundScheduler()
|
| 310 |
scheduler.add_job(func=backend_routine, trigger="interval", seconds=REFRESH_RATE, max_instances=1)
|