Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from typing import Optional | |
| from rembg import remove | |
| # import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import StableDiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel | |
| import torch | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| DEFAULT_SEED = 42 | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| DEFAULT_WIDTH = 512 | |
| DEFAULT_HEIGHT = 512 | |
| DEFAULT_GS = 7.5 | |
| DEFAULT_LS = 1.0 | |
| DEFAULT_NUM_INF_STEPS = 50 | |
| DEFAULT_CN_COND_SCALE = 1.0 | |
| DEFAULT_IPA_SCALE = 0.5 | |
| # @spaces.GPU #[uncomment to use ZeroGPU] | |
| def infer(lora_model_id: Optional[str] = "osmr/stable-diffusion-v1-4-lora-iv-ghibli", | |
| prompt: str = "", | |
| negative_prompt: str = "", | |
| seed: Optional[int] = DEFAULT_SEED, | |
| randomize_seed: bool = True, | |
| width: int = DEFAULT_WIDTH, | |
| height: int = DEFAULT_HEIGHT, | |
| guidance_scale: Optional[float] = DEFAULT_GS, | |
| lora_scale: Optional[float] = DEFAULT_LS, | |
| num_inference_steps: Optional[int] = DEFAULT_NUM_INF_STEPS, | |
| controlnet_type: str = "Edge-Detection", | |
| controlnet_cond_scale: float = DEFAULT_CN_COND_SCALE, | |
| controlnet_image: object = None, | |
| ipadapter_scale: float = DEFAULT_IPA_SCALE, | |
| ipadapter_image: object = None, | |
| do_remove_bg: bool = False, | |
| progress = gr.Progress(track_tqdm=True)): | |
| use_lora = (lora_model_id in [ | |
| "osmr/stable-diffusion-v1-4-lora-iv-ghibli", | |
| "osmr/stable-diffusion-v1-4-lora-db-ghibli", | |
| "osmr/stable-diffusion-v1-5-lora-iv-ghibli", | |
| "osmr/stable-diffusion-v1-5-lora-db-ghibli", | |
| ]) | |
| if not use_lora: | |
| model_id = lora_model_id | |
| lora_model_id = None | |
| else: | |
| if lora_model_id == "osmr/stable-diffusion-v1-4-lora-iv-ghibli": | |
| model_id = "CompVis/stable-diffusion-v1-4" | |
| elif lora_model_id == "osmr/stable-diffusion-v1-4-lora-db-ghibli": | |
| model_id = "CompVis/stable-diffusion-v1-4" | |
| elif lora_model_id == "osmr/stable-diffusion-v1-5-lora-iv-ghibli": | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| elif lora_model_id == "osmr/stable-diffusion-v1-5-lora-db-ghibli": | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| else: | |
| model_id = lora_model_id | |
| lora_model_id = None | |
| sd_version = "1.5" if (model_id == "runwayml/stable-diffusion-v1-5") else "1.4" | |
| use_controlnet = (controlnet_image is not None) | |
| use_ipadapter = (ipadapter_image is not None) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if use_controlnet: | |
| if sd_version == "1.4": | |
| if controlnet_type == "Edge-Detection": | |
| controlnet_id = "lllyasviel/sd-controlnet-canny" | |
| else: | |
| controlnet_id = "lllyasviel/sd-controlnet-openpose" | |
| else: | |
| if controlnet_type == "Edge-Detection": | |
| controlnet_id = "lllyasviel/control_v11p_sd15_canny" | |
| else: | |
| controlnet_id = "lllyasviel/control_v11p_sd15_openpose" | |
| controlnet = ControlNetModel.from_pretrained( | |
| pretrained_model_name_or_path=controlnet_id, | |
| torch_dtype=torch_dtype) | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| pretrained_model_name_or_path=model_id, | |
| controlnet=controlnet, | |
| torch_dtype=torch_dtype) | |
| else: | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| pretrained_model_name_or_path=model_id, | |
| torch_dtype=torch_dtype) | |
| if use_ipadapter: | |
| pipe.load_ip_adapter( | |
| "h94/IP-Adapter", | |
| subfolder="models", | |
| weight_name="ip-adapter_sd15.bin") | |
| pipe.set_ip_adapter_scale(ipadapter_scale) | |
| if use_lora: | |
| pipe.load_lora_weights(lora_model_id) | |
| cross_attention_kwargs = {"scale": lora_scale} | |
| else: | |
| cross_attention_kwargs = None | |
| pipe = pipe.to(device) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| image=controlnet_image, | |
| controlnet_conditioning_scale=(float(controlnet_cond_scale) if use_controlnet else None), | |
| ip_adapter_image=ipadapter_image | |
| ).images[0] | |
| if do_remove_bg: | |
| image = remove(image) | |
| return image, seed | |
| examples = [ | |
| "GBL, a man and a woman sitting at a table with glasses of wine in front of them", | |
| "a man and a woman sitting at a table with glasses of wine in front of them", | |
| "GBL, a man sitting at a desk in a library with a book open in front of him", | |
| "GBL, a cartoon woman is standing in front of a wall", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(" # Ghibli LoRA generation") | |
| with gr.Row(): | |
| lora_model_id = gr.Dropdown( | |
| choices=[ | |
| "osmr/stable-diffusion-v1-4-lora-iv-ghibli", | |
| "osmr/stable-diffusion-v1-4-lora-db-ghibli", | |
| "osmr/stable-diffusion-v1-5-lora-iv-ghibli", | |
| "osmr/stable-diffusion-v1-5-lora-db-ghibli", | |
| "CompVis/stable-diffusion-v1-4", | |
| "runwayml/stable-diffusion-v1-5"], | |
| multiselect=False, | |
| allow_custom_value=True, | |
| label="Model", | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| value="GBL, a man and a woman sitting at a table with glasses of wine in front of them", | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| value="low quality, deformed, ugly, bad art, poorly drawn, bad anatomy, low detail, unrealistic", | |
| placeholder="Enter a negative prompt", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=DEFAULT_SEED, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=DEFAULT_WIDTH, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=DEFAULT_HEIGHT, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.0, | |
| maximum=10.0, | |
| step=0.1, | |
| value=DEFAULT_GS, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=DEFAULT_NUM_INF_STEPS, | |
| ) | |
| with gr.Row(): | |
| lora_scale = gr.Slider( | |
| label="LoRA scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=DEFAULT_LS, | |
| ) | |
| do_remove_bg = gr.Checkbox(label="Remove background", value=False) | |
| with gr.Accordion("ControlNet Settings", open=False): | |
| controlnet_type = gr.Dropdown( | |
| choices=[ | |
| "Edge-Detection", | |
| "Pose-Estimation"], | |
| interactive=True, | |
| label="ControlNet Type", | |
| ) | |
| controlnet_cond_scale = gr.Slider( | |
| label="ControlNet Conditioning Scale", | |
| minimum=0.0, | |
| maximum=2.0, | |
| step=0.1, | |
| value=DEFAULT_CN_COND_SCALE | |
| ) | |
| controlnet_image = gr.Image( | |
| label="Control Image", | |
| type="pil", | |
| show_label=True) | |
| with gr.Accordion("IP-adapter Settings", open=False): | |
| ipadapter_scale = gr.Slider( | |
| label="IP-adapter Scale", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=DEFAULT_IPA_SCALE | |
| ) | |
| ipadapter_image = gr.Image( | |
| label="IP-adapter Image", | |
| type="pil", | |
| show_label=True) | |
| gr.Examples(examples=examples, inputs=[prompt]) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| lora_model_id, | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| lora_scale, | |
| num_inference_steps, | |
| controlnet_type, | |
| controlnet_cond_scale, | |
| controlnet_image, | |
| ipadapter_scale, | |
| ipadapter_image, | |
| do_remove_bg, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True) | |