Spaces:
Running
Running
| import rerun as rr | |
| import rerun.blueprint as rrb | |
| import depth_pro | |
| import subprocess | |
| import torch | |
| import os | |
| import gradio as gr | |
| from gradio_rerun import Rerun | |
| import spaces | |
| from PIL import Image | |
| import tempfile | |
| import cv2 | |
| # Run the script to get pretrained models | |
| if not os.path.exists("./checkpoints/depth_pro.pt"): | |
| print("downloading pretrained model") | |
| subprocess.run(["bash", "get_pretrained_models.sh"]) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load model and preprocessing transform | |
| print("loading model...") | |
| model, transform = depth_pro.create_model_and_transforms() | |
| model = model.to(device) | |
| model.eval() | |
| def resize_image(image_buffer, max_size=256): | |
| with Image.fromarray(image_buffer) as img: | |
| # Calculate the new size while maintaining aspect ratio | |
| ratio = max_size / max(img.size) | |
| new_size = tuple([int(x * ratio) for x in img.size]) | |
| # Resize the image | |
| img = img.resize(new_size, Image.LANCZOS) | |
| # Create a temporary file | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: | |
| img.save(temp_file, format="PNG") | |
| return temp_file.name | |
| def predict_depth(input_image): | |
| # Preprocess the image | |
| result = depth_pro.load_rgb(input_image) | |
| image = result[0] | |
| f_px = result[-1] # Assuming f_px is the last item in the returned tuple | |
| image = transform(image) | |
| image = image.to(device) | |
| # Run inference | |
| prediction = model.infer(image, f_px=f_px) | |
| depth = prediction["depth"] # Depth in [m] | |
| focallength_px = prediction["focallength_px"] # Focal length in pixels | |
| # Convert depth to numpy array if it's a torch tensor | |
| if isinstance(depth, torch.Tensor): | |
| depth = depth.cpu().numpy() | |
| # Convert focal length to a float if it's a torch tensor | |
| if isinstance(focallength_px, torch.Tensor): | |
| focallength_px = focallength_px.item() | |
| # Ensure depth is a 2D numpy array | |
| if depth.ndim != 2: | |
| depth = depth.squeeze() | |
| # Clip depth values to 0m - 10m | |
| depth = depth.clip(0, 10) | |
| return depth, focallength_px | |
| def run_rerun(path_to_video): | |
| stream = rr.binary_stream() | |
| print("video path:", path_to_video) | |
| blueprint = rrb.Blueprint( | |
| rrb.Vertical( | |
| rrb.Spatial3DView(origin="/"), | |
| rrb.Horizontal( | |
| rrb.Spatial2DView( | |
| origin="/world/camera/depth", | |
| ), | |
| rrb.Spatial2DView(origin="/world/camera/frame"), | |
| ), | |
| ), | |
| collapse_panels=True, | |
| ) | |
| rr.send_blueprint(blueprint) | |
| yield stream.read() | |
| video_asset = rr.AssetVideo(path=path_to_video) | |
| rr.log("world/video", video_asset, static=True) | |
| # Send automatically determined video frame timestamps. | |
| frame_timestamps_ns = video_asset.read_frame_timestamps_ns() | |
| cap = cv2.VideoCapture(path_to_video) | |
| num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) | |
| print(f"Number of frames in the video: {num_frames}") | |
| for i in range(len(frame_timestamps_ns)): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| temp_file = None | |
| try: | |
| # Resize the image to make the inference faster | |
| temp_file = resize_image(frame, max_size=256) | |
| depth, focal_length = predict_depth(temp_file) | |
| # find x and y scale factors, which can be applied to image | |
| x_scale = depth.shape[1] / frame.shape[1] | |
| y_scale = depth.shape[0] / frame.shape[0] | |
| rr.set_time_nanos("video_time", frame_timestamps_ns[i]) | |
| rr.log( | |
| "world/camera/depth", | |
| rr.DepthImage(depth, meter=1), | |
| ) | |
| rr.log( | |
| "world/camera/frame", | |
| rr.VideoFrameReference( | |
| timestamp=rr.components.VideoTimestamp( | |
| nanoseconds=frame_timestamps_ns[i] | |
| ), | |
| video_reference="world/video", | |
| ), | |
| rr.Transform3D(scale=(x_scale, y_scale, 1)), | |
| ) | |
| rr.log( | |
| "world/camera", | |
| rr.Pinhole( | |
| focal_length=focal_length, | |
| width=depth.shape[1], | |
| height=depth.shape[0], | |
| principal_point=(depth.shape[1] / 2, depth.shape[0] / 2), | |
| camera_xyz=rr.ViewCoordinates.FLU, | |
| image_plane_distance=depth.max(), | |
| ), | |
| ) | |
| yield stream.read() | |
| except Exception as e: | |
| rr.log( | |
| "error", | |
| rr.TextLog(f"An error has occurred: {e}", level=rr.TextLogLevel.ERROR), | |
| ) | |
| finally: | |
| # Clean up the temporary file | |
| if temp_file and os.path.exists(temp_file): | |
| os.remove(temp_file) | |
| yield stream.read() | |
| with gr.Blocks() as interface: | |
| gr.Markdown( | |
| """ | |
| # DepthPro Rerun Demo | |
| [DepthPro](https://huggingface.co/apple/DepthPro) is a fast metric depth prediction model. Simply upload a video to visualize the depth predictions in real-time. | |
| High resolution videos will be automatically resized to 256x256 pixels, to speed up the inference and visualize multiple frames. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(variant="compact"): | |
| video = gr.Video( | |
| format="mp4", | |
| interactive=True, | |
| label="Video", | |
| include_audio=False, | |
| max_length=10, | |
| ) | |
| visualize = gr.Button("Visualize ML Depth Pro") | |
| with gr.Column(): | |
| viewer = Rerun( | |
| streaming=True, | |
| ) | |
| visualize.click(run_rerun, inputs=[video], outputs=[viewer]) | |
| if __name__ == "__main__": | |
| interface.launch() | |