Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import onnxruntime as ort
|
| 4 |
+
import re
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# ----------------------------
|
| 8 |
+
# CONFIGURATION (UPDATE THESE)
|
| 9 |
+
# ----------------------------
|
| 10 |
+
MODEL_PATH = "tinystories_lstm.onnx" # Path to your ONNX model
|
| 11 |
+
VOCAB_PATH = "vocab.txt" # Path to vocab file
|
| 12 |
+
|
| 13 |
+
# Download files if not present (for Hugging Face Spaces or Colab)
|
| 14 |
+
if not os.path.exists(MODEL_PATH):
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
MODEL_PATH = hf_hub_download(
|
| 17 |
+
repo_id="phmd/TinyStories-LSTM-5.5M", # 👈 REPLACE WITH YOUR HF MODEL ID
|
| 18 |
+
filename="tinystories_lstm.onnx"
|
| 19 |
+
)
|
| 20 |
+
if not os.path.exists(VOCAB_PATH):
|
| 21 |
+
VOCAB_PATH = hf_hub_download(
|
| 22 |
+
repo_id="phmd/TinyStories-LSTM-5.5M",
|
| 23 |
+
filename="vocab.txt"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# ----------------------------
|
| 27 |
+
# LOAD MODEL & VOCAB
|
| 28 |
+
# ----------------------------
|
| 29 |
+
print("Loading vocabulary...")
|
| 30 |
+
with open(VOCAB_PATH, "r") as f:
|
| 31 |
+
vocab = [line.strip() for line in f]
|
| 32 |
+
word2idx = {word: idx for idx, word in enumerate(vocab)}
|
| 33 |
+
idx2word = {idx: word for word, idx in word2idx.items()}
|
| 34 |
+
|
| 35 |
+
SOS_IDX = word2idx["<SOS>"]
|
| 36 |
+
EOS_IDX = word2idx["<EOS>"]
|
| 37 |
+
PAD_IDX = word2idx["<PAD>"]
|
| 38 |
+
UNK_IDX = word2idx["<UNK>"]
|
| 39 |
+
|
| 40 |
+
print("Loading ONNX model...")
|
| 41 |
+
ort_session = ort.InferenceSession(MODEL_PATH)
|
| 42 |
+
|
| 43 |
+
# ----------------------------
|
| 44 |
+
# HELPER FUNCTIONS
|
| 45 |
+
# ----------------------------
|
| 46 |
+
def tokenize(text):
|
| 47 |
+
text = re.sub(r'([.,!?])', r' \1 ', text.lower())
|
| 48 |
+
return text.split()
|
| 49 |
+
|
| 50 |
+
def generate_story(prompt, max_new_tokens=64, temperature=0.8):
|
| 51 |
+
if not prompt.strip():
|
| 52 |
+
prompt = "once upon a time"
|
| 53 |
+
|
| 54 |
+
tokens = tokenize(prompt)
|
| 55 |
+
current_seq = [SOS_IDX] + [word2idx.get(t, UNK_IDX) for t in tokens]
|
| 56 |
+
|
| 57 |
+
for _ in range(max_new_tokens):
|
| 58 |
+
# Pad/truncate to 50
|
| 59 |
+
padded = current_seq[-50:] if len(current_seq) > 50 else current_seq
|
| 60 |
+
padded = padded + [PAD_IDX] * (50 - len(padded))
|
| 61 |
+
|
| 62 |
+
input_tensor = np.array([padded], dtype=np.int64)
|
| 63 |
+
logits = ort_session.run(None, {"input": input_tensor})[0]
|
| 64 |
+
|
| 65 |
+
# Get logits at last real token position
|
| 66 |
+
last_pos = min(len(current_seq) - 1, 49)
|
| 67 |
+
next_token_logits = logits[0, last_pos, :] / temperature
|
| 68 |
+
|
| 69 |
+
# Apply softmax sampling
|
| 70 |
+
probs = np.exp(next_token_logits - np.max(next_token_logits))
|
| 71 |
+
probs = probs / (np.sum(probs) + 1e-8)
|
| 72 |
+
next_token = np.random.choice(len(probs), p=probs)
|
| 73 |
+
|
| 74 |
+
if next_token == EOS_IDX:
|
| 75 |
+
break
|
| 76 |
+
current_seq.append(next_token)
|
| 77 |
+
|
| 78 |
+
# Decode and clean
|
| 79 |
+
words = [idx2word[idx] for idx in current_seq[1:] if idx != PAD_IDX]
|
| 80 |
+
story = " ".join(words)
|
| 81 |
+
story = re.sub(r'\s+([.,!?])', r'\1', story) # Fix spacing
|
| 82 |
+
story = story.replace(" †", '"').replace("â€", '"') # Fix encoding artifacts
|
| 83 |
+
return story
|
| 84 |
+
|
| 85 |
+
# ----------------------------
|
| 86 |
+
# GRADIO INTERFACE
|
| 87 |
+
# ----------------------------
|
| 88 |
+
with gr.Blocks(title="TinyStories LSTM") as demo:
|
| 89 |
+
gr.Markdown("# 📖 TinyStories Word-Level LSTM")
|
| 90 |
+
gr.Markdown("A **10.9 MB** LSTM that generates children's stories in seconds — **runs on CPU!**")
|
| 91 |
+
|
| 92 |
+
with gr.Row():
|
| 93 |
+
with gr.Column():
|
| 94 |
+
prompt = gr.Textbox(
|
| 95 |
+
label="Story Starter",
|
| 96 |
+
value="once upon a time",
|
| 97 |
+
placeholder="e.g., 'there was a brave little mouse...'"
|
| 98 |
+
)
|
| 99 |
+
with gr.Row():
|
| 100 |
+
max_len = gr.Slider(10, 200, value=80, label="Max New Tokens")
|
| 101 |
+
temp = gr.Slider(0.5, 1.5, value=0.8, label="Temperature")
|
| 102 |
+
btn = gr.Button("Generate Story 🪄", variant="primary")
|
| 103 |
+
|
| 104 |
+
with gr.Column():
|
| 105 |
+
output = gr.Textbox(label="Generated Story", lines=15)
|
| 106 |
+
|
| 107 |
+
btn.click(
|
| 108 |
+
fn=generate_story,
|
| 109 |
+
inputs=[prompt, max_len, temp],
|
| 110 |
+
outputs=output
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
gr.Examples(
|
| 114 |
+
examples=[
|
| 115 |
+
["once upon a time"],
|
| 116 |
+
["there was a robot who loved flowers"],
|
| 117 |
+
["in a faraway forest, a squirrel found a key"]
|
| 118 |
+
],
|
| 119 |
+
inputs=prompt
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
gr.Markdown("""
|
| 123 |
+
---
|
| 124 |
+
Model: [TinyStories LSTM (ONNX)](https://huggingface.co/your-username/tinystories-lstm-onnx) •
|
| 125 |
+
Size: 10.9 MB •
|
| 126 |
+
Runs on CPU in seconds •
|
| 127 |
+
Trained on 500k TinyStories
|
| 128 |
+
""")
|
| 129 |
+
|
| 130 |
+
# Launch (for Colab or local)
|
| 131 |
+
if __name__ == "__main__":
|
| 132 |
+
demo.launch()
|