Commit
·
048e1ca
1
Parent(s):
b129e61
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from faster_whisper import WhisperModel
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
model_size = "large-v2"
|
| 7 |
+
|
| 8 |
+
# get device
|
| 9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
if device == "cuda:0":
|
| 12 |
+
# Run on GPU with FP16
|
| 13 |
+
model_whisper = WhisperModel(model_size, device="cuda", compute_type="float16")
|
| 14 |
+
# or Run on GPU with INT8
|
| 15 |
+
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
|
| 16 |
+
else:
|
| 17 |
+
# Run on CPU with INT8
|
| 18 |
+
model_whisper = WhisperModel(model_size, device="cpu", compute_type="int8")
|
| 19 |
+
|
| 20 |
+
def get_filename(file_obj):
|
| 21 |
+
return file_obj.name.split("/")[-1]
|
| 22 |
+
|
| 23 |
+
def audio_to_transcript(file_obj):
|
| 24 |
+
# get all audio segments
|
| 25 |
+
segments, _ = model_whisper.transcribe(file_obj.name, beam_size=5, vad_filter=True)
|
| 26 |
+
print("start")
|
| 27 |
+
start_segments, end_segments, text_segments = list(), list(), list()
|
| 28 |
+
for segment in segments:
|
| 29 |
+
start, end, text = segment.start, segment.end, segment.text
|
| 30 |
+
start_segments.append(start)
|
| 31 |
+
end_segments.append(end)
|
| 32 |
+
text_segments.append(text)
|
| 33 |
+
|
| 34 |
+
# save transcript into csv
|
| 35 |
+
df = pd.DataFrame()
|
| 36 |
+
df["start"] = start_segments
|
| 37 |
+
df["end"] = end_segments
|
| 38 |
+
df["text"] = text_segments
|
| 39 |
+
|
| 40 |
+
print(df)
|
| 41 |
+
|
| 42 |
+
return get_filename(file_obj), df
|
| 43 |
+
|
| 44 |
+
## Gradio interface
|
| 45 |
+
headers = ["start", "end", "text"]
|
| 46 |
+
iface = gr.Interface(fn=audio_to_transcript,
|
| 47 |
+
inputs=gr.File(label="Audio file"),
|
| 48 |
+
outputs=[
|
| 49 |
+
gr.Textbox(label="Name of the audio file"),
|
| 50 |
+
gr.DataFrame(label="Transcript", headers=headers),
|
| 51 |
+
],
|
| 52 |
+
allow_flagging="never",
|
| 53 |
+
title="Audio to Transcript",
|
| 54 |
+
description="Just paste any audio file and get its corresponding transcript with timeline.",
|
| 55 |
+
)
|
| 56 |
+
iface.launch()
|