Spaces:
Runtime error
Runtime error
Duplicate from nateraw/music-visualizer
Browse filesCo-authored-by: Nate Raw <[email protected]>
- .gitattributes +33 -0
- README.md +13 -0
- app.py +157 -0
- requirements.txt +5 -0
.gitattributes
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Music Visualizer
|
| 3 |
+
emoji: 🐨
|
| 4 |
+
colorFrom: gray
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.7
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: nateraw/music-visualizer
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import librosa
|
| 5 |
+
import numpy as np
|
| 6 |
+
import requests
|
| 7 |
+
import torch
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from torchvision.io import write_video
|
| 10 |
+
from torchvision.transforms.functional import pil_to_tensor
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_rgb_image(r=255, g=255, b=255, size=(1400, 900), overlay_im=None, return_pil=False):
|
| 14 |
+
image = Image.new("RGBA", size, (r, g, b, 255))
|
| 15 |
+
|
| 16 |
+
if overlay_im:
|
| 17 |
+
img_w, img_h = overlay_im.size
|
| 18 |
+
bg_w, bg_h = image.size
|
| 19 |
+
offset = ((bg_w - img_w) // 2, (bg_h - img_h) // 2)
|
| 20 |
+
image.alpha_composite(overlay_im, offset)
|
| 21 |
+
image = image.convert("RGB")
|
| 22 |
+
return image if return_pil else np.array(image)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def write_frames_between(image_a, image_b, out_dir="./images", n=500, skip_existing=False):
|
| 26 |
+
out_dir = Path(out_dir)
|
| 27 |
+
out_dir.mkdir(exist_ok=True, parents=True)
|
| 28 |
+
|
| 29 |
+
for i, t in enumerate(np.linspace(0.0, 1.0, n)):
|
| 30 |
+
out_file = out_dir / f"image{i:06d}.jpg"
|
| 31 |
+
if out_file.exists() and skip_existing:
|
| 32 |
+
continue
|
| 33 |
+
im_arr = torch.lerp(torch.tensor(image_a).float(), torch.tensor(image_b).float(), float(t))
|
| 34 |
+
im = Image.fromarray(np.around(im_arr.numpy()).astype(np.uint8))
|
| 35 |
+
im.save(out_file)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_timesteps_arr(audio_filepath, offset, duration, fps=30, margin=1.0, smooth=0.0):
|
| 39 |
+
y, sr = librosa.load(audio_filepath, offset=offset, duration=duration)
|
| 40 |
+
|
| 41 |
+
# librosa.stft hardcoded defaults...
|
| 42 |
+
# n_fft defaults to 2048
|
| 43 |
+
# hop length is win_length // 4
|
| 44 |
+
# win_length defaults to n_fft
|
| 45 |
+
D = librosa.stft(y, n_fft=2048, hop_length=2048 // 4, win_length=2048)
|
| 46 |
+
|
| 47 |
+
# Extract percussive elements
|
| 48 |
+
D_harmonic, D_percussive = librosa.decompose.hpss(D, margin=margin)
|
| 49 |
+
y_percussive = librosa.istft(D_percussive, length=len(y))
|
| 50 |
+
|
| 51 |
+
# Get normalized melspectrogram
|
| 52 |
+
spec_raw = librosa.feature.melspectrogram(y=y_percussive, sr=sr)
|
| 53 |
+
spec_max = np.amax(spec_raw, axis=0)
|
| 54 |
+
spec_norm = (spec_max - np.min(spec_max)) / np.ptp(spec_max)
|
| 55 |
+
|
| 56 |
+
# Resize cumsum of spec norm to our desired number of interpolation frames
|
| 57 |
+
x_norm = np.linspace(0, spec_norm.shape[-1], spec_norm.shape[-1])
|
| 58 |
+
y_norm = np.cumsum(spec_norm)
|
| 59 |
+
y_norm /= y_norm[-1]
|
| 60 |
+
x_resize = np.linspace(0, y_norm.shape[-1], int(duration * fps))
|
| 61 |
+
|
| 62 |
+
T = np.interp(x_resize, x_norm, y_norm)
|
| 63 |
+
|
| 64 |
+
# Apply smoothing
|
| 65 |
+
return T * (1 - smooth) + np.linspace(0.0, 1.0, T.shape[0]) * smooth
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def make_fast_frame_video(
|
| 69 |
+
frames_or_frame_dir="images",
|
| 70 |
+
audio_filepath="music/thoughts.mp3",
|
| 71 |
+
output_filepath="output.mp4",
|
| 72 |
+
sr=44100,
|
| 73 |
+
offset=7,
|
| 74 |
+
duration=5,
|
| 75 |
+
fps=30,
|
| 76 |
+
margin=1.0,
|
| 77 |
+
smooth=0.1,
|
| 78 |
+
frame_filename_ext=".jpg",
|
| 79 |
+
):
|
| 80 |
+
|
| 81 |
+
if isinstance(frames_or_frame_dir, list):
|
| 82 |
+
frame_filepaths = frames_or_frame_dir
|
| 83 |
+
else:
|
| 84 |
+
frame_filepaths = sorted(Path(frames_or_frame_dir).glob(f"**/*{frame_filename_ext}"))
|
| 85 |
+
|
| 86 |
+
num_frames = len(frame_filepaths)
|
| 87 |
+
T = get_timesteps_arr(audio_filepath, offset, duration, fps=fps, margin=margin, smooth=smooth)
|
| 88 |
+
yp = np.arange(num_frames)
|
| 89 |
+
xp = np.linspace(0.0, 1.0, num_frames)
|
| 90 |
+
|
| 91 |
+
frame_idxs = np.around(np.interp(T, xp, yp)).astype(np.int32)
|
| 92 |
+
|
| 93 |
+
frames = None
|
| 94 |
+
for img_path in [frame_filepaths[x] for x in frame_idxs]:
|
| 95 |
+
frame = pil_to_tensor(Image.open(img_path)).unsqueeze(0)
|
| 96 |
+
frames = frame if frames is None else torch.cat([frames, frame])
|
| 97 |
+
frames = frames.permute(0, 2, 3, 1)
|
| 98 |
+
|
| 99 |
+
y, sr = librosa.load(audio_filepath, sr=sr, mono=True, offset=offset, duration=duration)
|
| 100 |
+
audio_tensor = torch.tensor(y).unsqueeze(0)
|
| 101 |
+
|
| 102 |
+
write_video(
|
| 103 |
+
output_filepath,
|
| 104 |
+
frames,
|
| 105 |
+
fps=fps,
|
| 106 |
+
audio_array=audio_tensor,
|
| 107 |
+
audio_fps=sr,
|
| 108 |
+
audio_codec="aac",
|
| 109 |
+
options={"crf": "23", "pix_fmt": "yuv420p"},
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
return output_filepath
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
OUTPUT_DIR = "multicolor_images_sm"
|
| 116 |
+
N = 500
|
| 117 |
+
IMAGE_SIZE = (640, 360)
|
| 118 |
+
MAX_DURATION = 10
|
| 119 |
+
|
| 120 |
+
if not Path(OUTPUT_DIR).exists():
|
| 121 |
+
overlay_image_url = "https://huggingface.co/datasets/nateraw/misc/resolve/main/Group%20122.png"
|
| 122 |
+
overlay_image = Image.open(requests.get(overlay_image_url, stream=True).raw, "r")
|
| 123 |
+
hex_codes = ["#5e6179", "#ffbb9f", "#dfeaf2", "#75e9e5", "#ff6b6b"]
|
| 124 |
+
|
| 125 |
+
rgb_vals = [tuple(int(hex.lstrip("#")[i : i + 2], 16) for i in (0, 2, 4)) for hex in hex_codes]
|
| 126 |
+
|
| 127 |
+
for i, (rgb_a, rgb_b) in enumerate(zip(rgb_vals, rgb_vals[1:])):
|
| 128 |
+
out_dir_step = Path(OUTPUT_DIR) / f"{i:06d}"
|
| 129 |
+
image_a = get_rgb_image(*rgb_a, size=IMAGE_SIZE, overlay_im=overlay_image)
|
| 130 |
+
image_b = get_rgb_image(*rgb_b, size=IMAGE_SIZE, overlay_im=overlay_image)
|
| 131 |
+
write_frames_between(image_a, image_b, out_dir=out_dir_step, n=N)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def fn(audio_filepath):
|
| 135 |
+
return make_fast_frame_video(
|
| 136 |
+
OUTPUT_DIR,
|
| 137 |
+
audio_filepath,
|
| 138 |
+
"out.mp4",
|
| 139 |
+
sr=44100,
|
| 140 |
+
offset=0,
|
| 141 |
+
duration=min(MAX_DURATION, librosa.get_duration(filename=audio_filepath)),
|
| 142 |
+
fps=18,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
interface = gr.Interface(
|
| 147 |
+
fn=fn,
|
| 148 |
+
inputs=gr.Audio(type="filepath"),
|
| 149 |
+
outputs="video",
|
| 150 |
+
title="Music Visualizer",
|
| 151 |
+
description="Create a simple music visualizer video with a cute 🤗 logo on top",
|
| 152 |
+
article="<p style='text-align: center'><a href='https://github.com/nateraw/my-huggingface-repos/tree/main/spaces/music-visualizer' target='_blank'>Github Repo</a></p>",
|
| 153 |
+
examples=[["https://huggingface.co/datasets/nateraw/misc/resolve/main/quick_example_loop.wav"]],
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
if __name__ == "__main__":
|
| 157 |
+
interface.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
matplotlib
|
| 2 |
+
torch
|
| 3 |
+
torchvision
|
| 4 |
+
librosa
|
| 5 |
+
av==9.2.0
|