Update app.py
Browse files
app.py
CHANGED
|
@@ -1,529 +1,542 @@
|
|
| 1 |
-
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File, Form
|
| 2 |
-
from fastapi.responses import FileResponse
|
| 3 |
-
from pydantic import BaseModel
|
| 4 |
-
from typing import Optional, Dict, Any, List
|
| 5 |
-
import uvicorn
|
| 6 |
-
import torch
|
| 7 |
-
from torch.utils.data import DataLoader
|
| 8 |
-
import logging
|
| 9 |
-
import os
|
| 10 |
-
import asyncio
|
| 11 |
-
import pandas as pd
|
| 12 |
-
from datetime import datetime
|
| 13 |
-
import shutil
|
| 14 |
-
from pathlib import Path
|
| 15 |
-
from sklearn.model_selection import train_test_split
|
| 16 |
-
import zipfile
|
| 17 |
-
import io
|
| 18 |
-
import numpy as np
|
| 19 |
-
import sys
|
| 20 |
-
import json
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Import existing utilities
|
| 24 |
-
from dataset_utils import (
|
| 25 |
-
ComplianceDataset,
|
| 26 |
-
ComplianceDatasetWithMetadata,
|
| 27 |
-
load_and_preprocess_data,
|
| 28 |
-
get_tokenizer,
|
| 29 |
-
save_label_encoders,
|
| 30 |
-
get_num_labels,
|
| 31 |
-
load_label_encoders
|
| 32 |
-
)
|
| 33 |
-
from train_utils import (
|
| 34 |
-
initialize_criterions,
|
| 35 |
-
train_model,
|
| 36 |
-
evaluate_model,
|
| 37 |
-
save_model,
|
| 38 |
-
summarize_metrics,
|
| 39 |
-
predict_probabilities
|
| 40 |
-
)
|
| 41 |
-
from models.roberta_model import RobertaMultiOutputModel
|
| 42 |
-
from config import (
|
| 43 |
-
TEXT_COLUMN,
|
| 44 |
-
LABEL_COLUMNS,
|
| 45 |
-
DEVICE,
|
| 46 |
-
NUM_EPOCHS,
|
| 47 |
-
LEARNING_RATE,
|
| 48 |
-
MAX_LEN,
|
| 49 |
-
BATCH_SIZE,
|
| 50 |
-
METADATA_COLUMNS
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
# Configure logging
|
| 54 |
-
logging.basicConfig(level=logging.INFO)
|
| 55 |
-
logger = logging.getLogger(__name__)
|
| 56 |
-
|
| 57 |
-
app = FastAPI(title="RoBERTa Compliance Predictor API")
|
| 58 |
-
|
| 59 |
-
# Create necessary directories
|
| 60 |
-
UPLOAD_DIR = Path("uploads")
|
| 61 |
-
MODEL_SAVE_DIR = Path("saved_models")
|
| 62 |
-
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 63 |
-
MODEL_SAVE_DIR.mkdir(parents=True, exist_ok=True)
|
| 64 |
-
|
| 65 |
-
# Global variables to track training status
|
| 66 |
-
training_status = {
|
| 67 |
-
"is_training": False,
|
| 68 |
-
"current_epoch": 0,
|
| 69 |
-
"total_epochs": 0,
|
| 70 |
-
"current_loss": 0.0,
|
| 71 |
-
"start_time": None,
|
| 72 |
-
"end_time": None,
|
| 73 |
-
"status": "idle",
|
| 74 |
-
"metrics": None
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
# Load the model and tokenizer for prediction
|
| 78 |
-
model_path = "ROBERTA_model.pth"
|
| 79 |
-
tokenizer = get_tokenizer('roberta-base')
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
raise HTTPException(status_code=400, detail="
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
"
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
status
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
"""
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
#
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File, Form
|
| 2 |
+
from fastapi.responses import FileResponse
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from typing import Optional, Dict, Any, List
|
| 5 |
+
import uvicorn
|
| 6 |
+
import torch
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
import asyncio
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import shutil
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from sklearn.model_selection import train_test_split
|
| 16 |
+
import zipfile
|
| 17 |
+
import io
|
| 18 |
+
import numpy as np
|
| 19 |
+
import sys
|
| 20 |
+
import json
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Import existing utilities
|
| 24 |
+
from dataset_utils import (
|
| 25 |
+
ComplianceDataset,
|
| 26 |
+
ComplianceDatasetWithMetadata,
|
| 27 |
+
load_and_preprocess_data,
|
| 28 |
+
get_tokenizer,
|
| 29 |
+
save_label_encoders,
|
| 30 |
+
get_num_labels,
|
| 31 |
+
load_label_encoders
|
| 32 |
+
)
|
| 33 |
+
from train_utils import (
|
| 34 |
+
initialize_criterions,
|
| 35 |
+
train_model,
|
| 36 |
+
evaluate_model,
|
| 37 |
+
save_model,
|
| 38 |
+
summarize_metrics,
|
| 39 |
+
predict_probabilities
|
| 40 |
+
)
|
| 41 |
+
from models.roberta_model import RobertaMultiOutputModel
|
| 42 |
+
from config import (
|
| 43 |
+
TEXT_COLUMN,
|
| 44 |
+
LABEL_COLUMNS,
|
| 45 |
+
DEVICE,
|
| 46 |
+
NUM_EPOCHS,
|
| 47 |
+
LEARNING_RATE,
|
| 48 |
+
MAX_LEN,
|
| 49 |
+
BATCH_SIZE,
|
| 50 |
+
METADATA_COLUMNS
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Configure logging
|
| 54 |
+
logging.basicConfig(level=logging.INFO)
|
| 55 |
+
logger = logging.getLogger(__name__)
|
| 56 |
+
|
| 57 |
+
app = FastAPI(title="RoBERTa Compliance Predictor API")
|
| 58 |
+
|
| 59 |
+
# Create necessary directories
|
| 60 |
+
UPLOAD_DIR = Path("uploads")
|
| 61 |
+
MODEL_SAVE_DIR = Path("saved_models")
|
| 62 |
+
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 63 |
+
MODEL_SAVE_DIR.mkdir(parents=True, exist_ok=True)
|
| 64 |
+
|
| 65 |
+
# Global variables to track training status
|
| 66 |
+
training_status = {
|
| 67 |
+
"is_training": False,
|
| 68 |
+
"current_epoch": 0,
|
| 69 |
+
"total_epochs": 0,
|
| 70 |
+
"current_loss": 0.0,
|
| 71 |
+
"start_time": None,
|
| 72 |
+
"end_time": None,
|
| 73 |
+
"status": "idle",
|
| 74 |
+
"metrics": None
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
# Load the model and tokenizer for prediction
|
| 78 |
+
model_path = MODEL_SAVE_DIR / "ROBERTA_model.pth"
|
| 79 |
+
tokenizer = get_tokenizer('roberta-base')
|
| 80 |
+
|
| 81 |
+
# Initialize model and label encoders with error handling
|
| 82 |
+
try:
|
| 83 |
+
label_encoders = load_label_encoders()
|
| 84 |
+
model = RobertaMultiOutputModel([len(label_encoders[col].classes_) for col in LABEL_COLUMNS]).to(DEVICE)
|
| 85 |
+
if model_path.exists():
|
| 86 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 87 |
+
model.eval()
|
| 88 |
+
else:
|
| 89 |
+
print(f"Warning: Model file {model_path} not found. Model will be initialized but not loaded.")
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"Warning: Could not load label encoders or model: {str(e)}")
|
| 92 |
+
print("Model will be initialized when training starts.")
|
| 93 |
+
model = None
|
| 94 |
+
|
| 95 |
+
class TrainingConfig(BaseModel):
|
| 96 |
+
model_name: str = "roberta-base"
|
| 97 |
+
batch_size: int = 8
|
| 98 |
+
learning_rate: float = 2e-5
|
| 99 |
+
num_epochs: int = 2
|
| 100 |
+
max_length: int = 128
|
| 101 |
+
random_state: int = 42
|
| 102 |
+
|
| 103 |
+
class TrainingResponse(BaseModel):
|
| 104 |
+
message: str
|
| 105 |
+
training_id: str
|
| 106 |
+
status: str
|
| 107 |
+
download_url: Optional[str] = None
|
| 108 |
+
|
| 109 |
+
class ValidationResponse(BaseModel):
|
| 110 |
+
message: str
|
| 111 |
+
metrics: Dict[str, Any]
|
| 112 |
+
predictions: List[Dict[str, Any]]
|
| 113 |
+
|
| 114 |
+
class TransactionData(BaseModel):
|
| 115 |
+
Transaction_Id: str
|
| 116 |
+
Hit_Seq: int
|
| 117 |
+
Hit_Id_List: str
|
| 118 |
+
Origin: str
|
| 119 |
+
Designation: str
|
| 120 |
+
Keywords: str
|
| 121 |
+
Name: str
|
| 122 |
+
SWIFT_Tag: str
|
| 123 |
+
Currency: str
|
| 124 |
+
Entity: str
|
| 125 |
+
Message: str
|
| 126 |
+
City: str
|
| 127 |
+
Country: str
|
| 128 |
+
State: str
|
| 129 |
+
Hit_Type: str
|
| 130 |
+
Record_Matching_String: str
|
| 131 |
+
WatchList_Match_String: str
|
| 132 |
+
Payment_Sender_Name: Optional[str] = ""
|
| 133 |
+
Payment_Reciever_Name: Optional[str] = ""
|
| 134 |
+
Swift_Message_Type: str
|
| 135 |
+
Text_Sanction_Data: str
|
| 136 |
+
Matched_Sanctioned_Entity: str
|
| 137 |
+
Is_Match: int
|
| 138 |
+
Red_Flag_Reason: str
|
| 139 |
+
Risk_Level: str
|
| 140 |
+
Risk_Score: float
|
| 141 |
+
Risk_Score_Description: str
|
| 142 |
+
CDD_Level: str
|
| 143 |
+
PEP_Status: str
|
| 144 |
+
Value_Date: str
|
| 145 |
+
Last_Review_Date: str
|
| 146 |
+
Next_Review_Date: str
|
| 147 |
+
Sanction_Description: str
|
| 148 |
+
Checker_Notes: str
|
| 149 |
+
Sanction_Context: str
|
| 150 |
+
Maker_Action: str
|
| 151 |
+
Customer_ID: int
|
| 152 |
+
Customer_Type: str
|
| 153 |
+
Industry: str
|
| 154 |
+
Transaction_Date_Time: str
|
| 155 |
+
Transaction_Type: str
|
| 156 |
+
Transaction_Channel: str
|
| 157 |
+
Originating_Bank: str
|
| 158 |
+
Beneficiary_Bank: str
|
| 159 |
+
Geographic_Origin: str
|
| 160 |
+
Geographic_Destination: str
|
| 161 |
+
Match_Score: float
|
| 162 |
+
Match_Type: str
|
| 163 |
+
Sanctions_List_Version: str
|
| 164 |
+
Screening_Date_Time: str
|
| 165 |
+
Risk_Category: str
|
| 166 |
+
Risk_Drivers: str
|
| 167 |
+
Alert_Status: str
|
| 168 |
+
Investigation_Outcome: str
|
| 169 |
+
Case_Owner_Analyst: str
|
| 170 |
+
Escalation_Level: str
|
| 171 |
+
Escalation_Date: str
|
| 172 |
+
Regulatory_Reporting_Flags: bool
|
| 173 |
+
Audit_Trail_Timestamp: str
|
| 174 |
+
Source_Of_Funds: str
|
| 175 |
+
Purpose_Of_Transaction: str
|
| 176 |
+
Beneficial_Owner: str
|
| 177 |
+
Sanctions_Exposure_History: bool
|
| 178 |
+
|
| 179 |
+
class PredictionRequest(BaseModel):
|
| 180 |
+
transaction_data: TransactionData
|
| 181 |
+
model_name: str = "ROBERTA_model" # Default to RoBERTa_model if not specified
|
| 182 |
+
|
| 183 |
+
class BatchPredictionResponse(BaseModel):
|
| 184 |
+
message: str
|
| 185 |
+
predictions: List[Dict[str, Any]]
|
| 186 |
+
metrics: Optional[Dict[str, Any]] = None
|
| 187 |
+
|
| 188 |
+
@app.get("/")
|
| 189 |
+
async def root():
|
| 190 |
+
return {"message": "RoBERTa Compliance Predictor API"}
|
| 191 |
+
|
| 192 |
+
@app.get("/v1/roberta/health")
|
| 193 |
+
async def health_check():
|
| 194 |
+
return {"status": "healthy"}
|
| 195 |
+
|
| 196 |
+
@app.get("/v1/roberta/training-status")
|
| 197 |
+
async def get_training_status():
|
| 198 |
+
return training_status
|
| 199 |
+
|
| 200 |
+
@app.post("/v1/roberta/train", response_model=TrainingResponse)
|
| 201 |
+
async def start_training(
|
| 202 |
+
config: str = Form(...),
|
| 203 |
+
background_tasks: BackgroundTasks = None,
|
| 204 |
+
file: UploadFile = File(...)
|
| 205 |
+
):
|
| 206 |
+
if training_status["is_training"]:
|
| 207 |
+
raise HTTPException(status_code=400, detail="Training is already in progress")
|
| 208 |
+
|
| 209 |
+
if not file.filename.endswith('.csv'):
|
| 210 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
# Parse the config JSON string into a TrainingConfig object
|
| 214 |
+
config_dict = json.loads(config)
|
| 215 |
+
training_config = TrainingConfig(**config_dict)
|
| 216 |
+
except json.JSONDecodeError:
|
| 217 |
+
raise HTTPException(status_code=400, detail="Invalid config JSON format")
|
| 218 |
+
except Exception as e:
|
| 219 |
+
raise HTTPException(status_code=400, detail=f"Invalid config parameters: {str(e)}")
|
| 220 |
+
|
| 221 |
+
file_path = UPLOAD_DIR / file.filename
|
| 222 |
+
with file_path.open("wb") as buffer:
|
| 223 |
+
shutil.copyfileobj(file.file, buffer)
|
| 224 |
+
|
| 225 |
+
training_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 226 |
+
|
| 227 |
+
training_status.update({
|
| 228 |
+
"is_training": True,
|
| 229 |
+
"current_epoch": 0,
|
| 230 |
+
"total_epochs": training_config.num_epochs,
|
| 231 |
+
"start_time": datetime.now().isoformat(),
|
| 232 |
+
"status": "starting"
|
| 233 |
+
})
|
| 234 |
+
|
| 235 |
+
background_tasks.add_task(train_model_task, training_config, str(file_path), training_id)
|
| 236 |
+
|
| 237 |
+
download_url = f"/v1/roberta/download-model/{training_id}"
|
| 238 |
+
|
| 239 |
+
return TrainingResponse(
|
| 240 |
+
message="Training started successfully",
|
| 241 |
+
training_id=training_id,
|
| 242 |
+
status="started",
|
| 243 |
+
download_url=download_url
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
@app.post("/v1/roberta/validate")
|
| 247 |
+
async def validate_model(
|
| 248 |
+
file: UploadFile = File(...),
|
| 249 |
+
model_name: str = "ROBERTA_model"
|
| 250 |
+
):
|
| 251 |
+
"""Validate a RoBERTa model on uploaded data"""
|
| 252 |
+
if not file.filename.endswith('.csv'):
|
| 253 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 254 |
+
|
| 255 |
+
try:
|
| 256 |
+
file_path = UPLOAD_DIR / file.filename
|
| 257 |
+
with file_path.open("wb") as buffer:
|
| 258 |
+
shutil.copyfileobj(file.file, buffer)
|
| 259 |
+
|
| 260 |
+
data_df, label_encoders = load_and_preprocess_data(str(file_path))
|
| 261 |
+
|
| 262 |
+
model_path = MODEL_SAVE_DIR / f"{model_name}_model.pth"
|
| 263 |
+
if not model_path.exists():
|
| 264 |
+
raise HTTPException(status_code=404, detail="RoBERTa model file not found")
|
| 265 |
+
|
| 266 |
+
num_labels_list = [len(label_encoders[col].classes_) for col in LABEL_COLUMNS]
|
| 267 |
+
metadata_df = data_df[METADATA_COLUMNS] if METADATA_COLUMNS and all(col in data_df.columns for col in METADATA_COLUMNS) else None
|
| 268 |
+
|
| 269 |
+
if metadata_df is not None:
|
| 270 |
+
metadata_dim = metadata_df.shape[1]
|
| 271 |
+
model = RobertaMultiOutputModel(num_labels_list, metadata_dim=metadata_dim).to(DEVICE)
|
| 272 |
+
else:
|
| 273 |
+
model = RobertaMultiOutputModel(num_labels_list).to(DEVICE)
|
| 274 |
+
|
| 275 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 276 |
+
model.eval()
|
| 277 |
+
|
| 278 |
+
texts = data_df[TEXT_COLUMN]
|
| 279 |
+
labels_array = data_df[LABEL_COLUMNS].values
|
| 280 |
+
tokenizer = get_tokenizer("roberta-base")
|
| 281 |
+
|
| 282 |
+
if metadata_df is not None:
|
| 283 |
+
dataset = ComplianceDatasetWithMetadata(
|
| 284 |
+
texts.tolist(),
|
| 285 |
+
metadata_df.values,
|
| 286 |
+
labels_array,
|
| 287 |
+
tokenizer,
|
| 288 |
+
MAX_LEN
|
| 289 |
+
)
|
| 290 |
+
else:
|
| 291 |
+
dataset = ComplianceDataset(
|
| 292 |
+
texts.tolist(),
|
| 293 |
+
labels_array,
|
| 294 |
+
tokenizer,
|
| 295 |
+
MAX_LEN
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE)
|
| 299 |
+
metrics, y_true_list, y_pred_list = evaluate_model(model, dataloader)
|
| 300 |
+
summary_metrics = summarize_metrics(metrics).to_dict()
|
| 301 |
+
|
| 302 |
+
all_probs = predict_probabilities(model, dataloader)
|
| 303 |
+
|
| 304 |
+
predictions = []
|
| 305 |
+
for i, (true_labels, pred_labels) in enumerate(zip(y_true_list, y_pred_list)):
|
| 306 |
+
field = LABEL_COLUMNS[i]
|
| 307 |
+
label_encoder = label_encoders[field]
|
| 308 |
+
true_labels_orig = label_encoder.inverse_transform(true_labels)
|
| 309 |
+
pred_labels_orig = label_encoder.inverse_transform(pred_labels)
|
| 310 |
+
|
| 311 |
+
for true, pred, probs in zip(true_labels_orig, pred_labels_orig, all_probs[i]):
|
| 312 |
+
predictions.append({
|
| 313 |
+
"field": field,
|
| 314 |
+
"true_label": true,
|
| 315 |
+
"predicted_label": pred,
|
| 316 |
+
"probabilities": probs.tolist()
|
| 317 |
+
})
|
| 318 |
+
|
| 319 |
+
return ValidationResponse(
|
| 320 |
+
message="Validation completed successfully",
|
| 321 |
+
metrics=summary_metrics,
|
| 322 |
+
predictions=predictions
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
except Exception as e:
|
| 326 |
+
logger.error(f"Validation failed: {str(e)}")
|
| 327 |
+
raise HTTPException(status_code=500, detail=f"Validation failed: {str(e)}")
|
| 328 |
+
finally:
|
| 329 |
+
if os.path.exists(file_path):
|
| 330 |
+
os.remove(file_path)
|
| 331 |
+
|
| 332 |
+
@app.post("/v1/roberta/predict")
|
| 333 |
+
async def predict(
|
| 334 |
+
request: Optional[PredictionRequest] = None,
|
| 335 |
+
file: UploadFile = File(None),
|
| 336 |
+
model_name: str = "ROBERTA_model"
|
| 337 |
+
):
|
| 338 |
+
"""
|
| 339 |
+
Make predictions on either a single transaction or a batch of transactions from a CSV file.
|
| 340 |
+
|
| 341 |
+
You can either:
|
| 342 |
+
1. Send a single transaction in the request body
|
| 343 |
+
2. Upload a CSV file with multiple transactions
|
| 344 |
+
|
| 345 |
+
Parameters:
|
| 346 |
+
- file: CSV file containing transactions for batch prediction
|
| 347 |
+
- model_name: Name of the model to use for prediction (default: "ROBERTA_model")
|
| 348 |
+
"""
|
| 349 |
+
try:
|
| 350 |
+
# Load the model
|
| 351 |
+
model_path = MODEL_SAVE_DIR / f"{model_name}_model.pth"
|
| 352 |
+
if not model_path.exists():
|
| 353 |
+
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
|
| 354 |
+
|
| 355 |
+
# Load label encoders
|
| 356 |
+
try:
|
| 357 |
+
label_encoders = load_label_encoders()
|
| 358 |
+
num_labels_list = [len(label_encoders[col].classes_) for col in LABEL_COLUMNS]
|
| 359 |
+
except Exception as e:
|
| 360 |
+
raise HTTPException(status_code=500, detail=f"Could not load label encoders: {str(e)}")
|
| 361 |
+
|
| 362 |
+
model = RobertaMultiOutputModel(num_labels_list).to(DEVICE)
|
| 363 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 364 |
+
model.eval()
|
| 365 |
+
|
| 366 |
+
# Handle batch prediction from CSV
|
| 367 |
+
if file and file.filename:
|
| 368 |
+
if not file.filename.endswith('.csv'):
|
| 369 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 370 |
+
|
| 371 |
+
file_path = UPLOAD_DIR / file.filename
|
| 372 |
+
with file_path.open("wb") as buffer:
|
| 373 |
+
shutil.copyfileobj(file.file, buffer)
|
| 374 |
+
|
| 375 |
+
try:
|
| 376 |
+
# Load and preprocess the CSV data
|
| 377 |
+
data_df, _ = load_and_preprocess_data(str(file_path))
|
| 378 |
+
texts = data_df[TEXT_COLUMN]
|
| 379 |
+
|
| 380 |
+
# Create dataset and dataloader
|
| 381 |
+
dataset = ComplianceDataset(
|
| 382 |
+
texts.tolist(),
|
| 383 |
+
[[0] * len(LABEL_COLUMNS)] * len(texts), # Dummy labels for prediction
|
| 384 |
+
tokenizer,
|
| 385 |
+
MAX_LEN
|
| 386 |
+
)
|
| 387 |
+
loader = DataLoader(dataset, batch_size=BATCH_SIZE)
|
| 388 |
+
|
| 389 |
+
# Get predictions
|
| 390 |
+
all_probabilities = predict_probabilities(model, loader)
|
| 391 |
+
|
| 392 |
+
# Process predictions
|
| 393 |
+
predictions = []
|
| 394 |
+
for i, row in data_df.iterrows():
|
| 395 |
+
transaction_pred = {}
|
| 396 |
+
for j, (col, probs) in enumerate(zip(LABEL_COLUMNS, all_probabilities)):
|
| 397 |
+
pred = np.argmax(probs[i])
|
| 398 |
+
decoded_pred = label_encoders[col].inverse_transform([pred])[0]
|
| 399 |
+
|
| 400 |
+
class_probs = {
|
| 401 |
+
label: float(probs[i][j])
|
| 402 |
+
for j, label in enumerate(label_encoders[col].classes_)
|
| 403 |
+
}
|
| 404 |
+
|
| 405 |
+
transaction_pred[col] = {
|
| 406 |
+
"prediction": decoded_pred,
|
| 407 |
+
"probabilities": class_probs
|
| 408 |
+
}
|
| 409 |
+
|
| 410 |
+
predictions.append({
|
| 411 |
+
"transaction_id": row.get('Transaction_Id', f"transaction_{i}"),
|
| 412 |
+
"predictions": transaction_pred
|
| 413 |
+
})
|
| 414 |
+
|
| 415 |
+
return BatchPredictionResponse(
|
| 416 |
+
message="Batch prediction completed successfully",
|
| 417 |
+
predictions=predictions
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
finally:
|
| 421 |
+
if os.path.exists(file_path):
|
| 422 |
+
os.remove(file_path)
|
| 423 |
+
|
| 424 |
+
# Handle single prediction
|
| 425 |
+
elif request and request.transaction_data:
|
| 426 |
+
input_data = pd.DataFrame([request.transaction_data.dict()])
|
| 427 |
+
|
| 428 |
+
text_input = f"<s>Transaction ID: {input_data['Transaction_Id'].iloc[0]} Origin: {input_data['Origin'].iloc[0]} Designation: {input_data['Designation'].iloc[0]} Keywords: {input_data['Keywords'].iloc[0]} Name: {input_data['Name'].iloc[0]} SWIFT Tag: {input_data['SWIFT_Tag'].iloc[0]} Currency: {input_data['Currency'].iloc[0]} Entity: {input_data['Entity'].iloc[0]} Message: {input_data['Message'].iloc[0]} City: {input_data['City'].iloc[0]} Country: {input_data['Country'].iloc[0]} State: {input_data['State'].iloc[0]} Hit Type: {input_data['Hit_Type'].iloc[0]} Record Matching String: {input_data['Record_Matching_String'].iloc[0]} WatchList Match String: {input_data['WatchList_Match_String'].iloc[0]} Payment Sender: {input_data['Payment_Sender_Name'].iloc[0]} Payment Receiver: {input_data['Payment_Reciever_Name'].iloc[0]} Swift Message Type: {input_data['Swift_Message_Type'].iloc[0]} Text Sanction Data: {input_data['Text_Sanction_Data'].iloc[0]} Matched Sanctioned Entity: {input_data['Matched_Sanctioned_Entity'].iloc[0]} Red Flag Reason: {input_data['Red_Flag_Reason'].iloc[0]} Risk Level: {input_data['Risk_Level'].iloc[0]} Risk Score: {input_data['Risk_Score'].iloc[0]} CDD Level: {input_data['CDD_Level'].iloc[0]} PEP Status: {input_data['PEP_Status'].iloc[0]} Sanction Description: {input_data['Sanction_Description'].iloc[0]} Checker Notes: {input_data['Checker_Notes'].iloc[0]} Sanction Context: {input_data['Sanction_Context'].iloc[0]}</s>"
|
| 429 |
+
|
| 430 |
+
dataset = ComplianceDataset(
|
| 431 |
+
texts=[text_input],
|
| 432 |
+
labels=[[0] * len(LABEL_COLUMNS)],
|
| 433 |
+
tokenizer=tokenizer,
|
| 434 |
+
max_len=MAX_LEN
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
loader = DataLoader(dataset, batch_size=1, shuffle=False)
|
| 438 |
+
all_probabilities = predict_probabilities(model, loader)
|
| 439 |
+
|
| 440 |
+
response = {}
|
| 441 |
+
for i, (col, probs) in enumerate(zip(LABEL_COLUMNS, all_probabilities)):
|
| 442 |
+
pred = np.argmax(probs[0])
|
| 443 |
+
decoded_pred = label_encoders[col].inverse_transform([pred])[0]
|
| 444 |
+
|
| 445 |
+
class_probs = {
|
| 446 |
+
label: float(probs[0][j])
|
| 447 |
+
for j, label in enumerate(label_encoders[col].classes_)
|
| 448 |
+
}
|
| 449 |
+
|
| 450 |
+
response[col] = {
|
| 451 |
+
"prediction": decoded_pred,
|
| 452 |
+
"probabilities": class_probs
|
| 453 |
+
}
|
| 454 |
+
|
| 455 |
+
return response
|
| 456 |
+
|
| 457 |
+
else:
|
| 458 |
+
raise HTTPException(
|
| 459 |
+
status_code=400,
|
| 460 |
+
detail="Either provide a transaction in the request body or upload a CSV file"
|
| 461 |
+
)
|
| 462 |
+
|
| 463 |
+
except Exception as e:
|
| 464 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 465 |
+
|
| 466 |
+
@app.get("/v1/roberta/download-model/{model_id}")
|
| 467 |
+
async def download_model(model_id: str):
|
| 468 |
+
"""Download a trained model"""
|
| 469 |
+
model_path = MODEL_SAVE_DIR / f"{model_id}_model.pth"
|
| 470 |
+
if not model_path.exists():
|
| 471 |
+
raise HTTPException(status_code=404, detail="Model not found")
|
| 472 |
+
|
| 473 |
+
return FileResponse(
|
| 474 |
+
path=model_path,
|
| 475 |
+
filename=f"roberta_model_{model_id}.pth",
|
| 476 |
+
media_type="application/octet-stream"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
async def train_model_task(config: TrainingConfig, file_path: str, training_id: str):
|
| 480 |
+
try:
|
| 481 |
+
data_df_original, label_encoders = load_and_preprocess_data(file_path)
|
| 482 |
+
save_label_encoders(label_encoders)
|
| 483 |
+
|
| 484 |
+
texts = data_df_original[TEXT_COLUMN]
|
| 485 |
+
labels_array = data_df_original[LABEL_COLUMNS].values
|
| 486 |
+
|
| 487 |
+
metadata_df = data_df_original[METADATA_COLUMNS] if METADATA_COLUMNS and all(col in data_df_original.columns for col in METADATA_COLUMNS) else None
|
| 488 |
+
|
| 489 |
+
num_labels_list = get_num_labels(label_encoders)
|
| 490 |
+
tokenizer = get_tokenizer(config.model_name)
|
| 491 |
+
|
| 492 |
+
if metadata_df is not None:
|
| 493 |
+
metadata_dim = metadata_df.shape[1]
|
| 494 |
+
dataset = ComplianceDatasetWithMetadata(
|
| 495 |
+
texts.tolist(),
|
| 496 |
+
metadata_df.values,
|
| 497 |
+
labels_array,
|
| 498 |
+
tokenizer,
|
| 499 |
+
config.max_length
|
| 500 |
+
)
|
| 501 |
+
model = RobertaMultiOutputModel(num_labels_list, metadata_dim=metadata_dim).to(DEVICE)
|
| 502 |
+
else:
|
| 503 |
+
dataset = ComplianceDataset(
|
| 504 |
+
texts.tolist(),
|
| 505 |
+
labels_array,
|
| 506 |
+
tokenizer,
|
| 507 |
+
config.max_length
|
| 508 |
+
)
|
| 509 |
+
model = RobertaMultiOutputModel(num_labels_list).to(DEVICE)
|
| 510 |
+
|
| 511 |
+
train_loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True)
|
| 512 |
+
|
| 513 |
+
criterions = initialize_criterions(num_labels_list)
|
| 514 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
|
| 515 |
+
|
| 516 |
+
for epoch in range(config.num_epochs):
|
| 517 |
+
training_status["current_epoch"] = epoch + 1
|
| 518 |
+
|
| 519 |
+
train_loss = train_model(model, train_loader, criterions, optimizer)
|
| 520 |
+
training_status["current_loss"] = train_loss
|
| 521 |
+
|
| 522 |
+
# Save model after each epoch
|
| 523 |
+
save_model(model, training_id, 'pth')
|
| 524 |
+
|
| 525 |
+
training_status.update({
|
| 526 |
+
"is_training": False,
|
| 527 |
+
"end_time": datetime.now().isoformat(),
|
| 528 |
+
"status": "completed"
|
| 529 |
+
})
|
| 530 |
+
|
| 531 |
+
except Exception as e:
|
| 532 |
+
logger.error(f"Training failed: {str(e)}")
|
| 533 |
+
training_status.update({
|
| 534 |
+
"is_training": False,
|
| 535 |
+
"end_time": datetime.now().isoformat(),
|
| 536 |
+
"status": "failed",
|
| 537 |
+
"error": str(e)
|
| 538 |
+
})
|
| 539 |
+
|
| 540 |
+
if __name__ == "__main__":
|
| 541 |
+
port = int(os.environ.get("PORT", 7860))
|
| 542 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|