Upload 10 files
Browse files- app.py +529 -0
- config.py +69 -0
- dataset_utils.py +165 -0
- dockerfile +51 -0
- label_encoders.pkl +3 -0
- models/__pycache__/roberta_model.cpython-311.pyc +0 -0
- models/roberta_model.py +56 -0
- requirements.txt +13 -0
- saved_models/ROBERTA_model.pth +3 -0
- train_utils.py +310 -0
app.py
ADDED
|
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks, UploadFile, File, Form
|
| 2 |
+
from fastapi.responses import FileResponse
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from typing import Optional, Dict, Any, List
|
| 5 |
+
import uvicorn
|
| 6 |
+
import torch
|
| 7 |
+
from torch.utils.data import DataLoader
|
| 8 |
+
import logging
|
| 9 |
+
import os
|
| 10 |
+
import asyncio
|
| 11 |
+
import pandas as pd
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import shutil
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from sklearn.model_selection import train_test_split
|
| 16 |
+
import zipfile
|
| 17 |
+
import io
|
| 18 |
+
import numpy as np
|
| 19 |
+
import sys
|
| 20 |
+
import json
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Import existing utilities
|
| 24 |
+
from dataset_utils import (
|
| 25 |
+
ComplianceDataset,
|
| 26 |
+
ComplianceDatasetWithMetadata,
|
| 27 |
+
load_and_preprocess_data,
|
| 28 |
+
get_tokenizer,
|
| 29 |
+
save_label_encoders,
|
| 30 |
+
get_num_labels,
|
| 31 |
+
load_label_encoders
|
| 32 |
+
)
|
| 33 |
+
from train_utils import (
|
| 34 |
+
initialize_criterions,
|
| 35 |
+
train_model,
|
| 36 |
+
evaluate_model,
|
| 37 |
+
save_model,
|
| 38 |
+
summarize_metrics,
|
| 39 |
+
predict_probabilities
|
| 40 |
+
)
|
| 41 |
+
from models.roberta_model import RobertaMultiOutputModel
|
| 42 |
+
from config import (
|
| 43 |
+
TEXT_COLUMN,
|
| 44 |
+
LABEL_COLUMNS,
|
| 45 |
+
DEVICE,
|
| 46 |
+
NUM_EPOCHS,
|
| 47 |
+
LEARNING_RATE,
|
| 48 |
+
MAX_LEN,
|
| 49 |
+
BATCH_SIZE,
|
| 50 |
+
METADATA_COLUMNS
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# Configure logging
|
| 54 |
+
logging.basicConfig(level=logging.INFO)
|
| 55 |
+
logger = logging.getLogger(__name__)
|
| 56 |
+
|
| 57 |
+
app = FastAPI(title="RoBERTa Compliance Predictor API")
|
| 58 |
+
|
| 59 |
+
# Create necessary directories
|
| 60 |
+
UPLOAD_DIR = Path("uploads")
|
| 61 |
+
MODEL_SAVE_DIR = Path("saved_models")
|
| 62 |
+
UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
|
| 63 |
+
MODEL_SAVE_DIR.mkdir(parents=True, exist_ok=True)
|
| 64 |
+
|
| 65 |
+
# Global variables to track training status
|
| 66 |
+
training_status = {
|
| 67 |
+
"is_training": False,
|
| 68 |
+
"current_epoch": 0,
|
| 69 |
+
"total_epochs": 0,
|
| 70 |
+
"current_loss": 0.0,
|
| 71 |
+
"start_time": None,
|
| 72 |
+
"end_time": None,
|
| 73 |
+
"status": "idle",
|
| 74 |
+
"metrics": None
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
# Load the model and tokenizer for prediction
|
| 78 |
+
model_path = "ROBERTA_model.pth"
|
| 79 |
+
tokenizer = get_tokenizer('roberta-base')
|
| 80 |
+
model = RobertaMultiOutputModel([len(load_label_encoders()[col].classes_) for col in LABEL_COLUMNS]).to(DEVICE)
|
| 81 |
+
if os.path.exists(model_path):
|
| 82 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 83 |
+
model.eval()
|
| 84 |
+
|
| 85 |
+
class TrainingConfig(BaseModel):
|
| 86 |
+
model_name: str = "roberta-base"
|
| 87 |
+
batch_size: int = 8
|
| 88 |
+
learning_rate: float = 2e-5
|
| 89 |
+
num_epochs: int = 2
|
| 90 |
+
max_length: int = 128
|
| 91 |
+
random_state: int = 42
|
| 92 |
+
|
| 93 |
+
class TrainingResponse(BaseModel):
|
| 94 |
+
message: str
|
| 95 |
+
training_id: str
|
| 96 |
+
status: str
|
| 97 |
+
download_url: Optional[str] = None
|
| 98 |
+
|
| 99 |
+
class ValidationResponse(BaseModel):
|
| 100 |
+
message: str
|
| 101 |
+
metrics: Dict[str, Any]
|
| 102 |
+
predictions: List[Dict[str, Any]]
|
| 103 |
+
|
| 104 |
+
class TransactionData(BaseModel):
|
| 105 |
+
Transaction_Id: str
|
| 106 |
+
Hit_Seq: int
|
| 107 |
+
Hit_Id_List: str
|
| 108 |
+
Origin: str
|
| 109 |
+
Designation: str
|
| 110 |
+
Keywords: str
|
| 111 |
+
Name: str
|
| 112 |
+
SWIFT_Tag: str
|
| 113 |
+
Currency: str
|
| 114 |
+
Entity: str
|
| 115 |
+
Message: str
|
| 116 |
+
City: str
|
| 117 |
+
Country: str
|
| 118 |
+
State: str
|
| 119 |
+
Hit_Type: str
|
| 120 |
+
Record_Matching_String: str
|
| 121 |
+
WatchList_Match_String: str
|
| 122 |
+
Payment_Sender_Name: Optional[str] = ""
|
| 123 |
+
Payment_Reciever_Name: Optional[str] = ""
|
| 124 |
+
Swift_Message_Type: str
|
| 125 |
+
Text_Sanction_Data: str
|
| 126 |
+
Matched_Sanctioned_Entity: str
|
| 127 |
+
Is_Match: int
|
| 128 |
+
Red_Flag_Reason: str
|
| 129 |
+
Risk_Level: str
|
| 130 |
+
Risk_Score: float
|
| 131 |
+
Risk_Score_Description: str
|
| 132 |
+
CDD_Level: str
|
| 133 |
+
PEP_Status: str
|
| 134 |
+
Value_Date: str
|
| 135 |
+
Last_Review_Date: str
|
| 136 |
+
Next_Review_Date: str
|
| 137 |
+
Sanction_Description: str
|
| 138 |
+
Checker_Notes: str
|
| 139 |
+
Sanction_Context: str
|
| 140 |
+
Maker_Action: str
|
| 141 |
+
Customer_ID: int
|
| 142 |
+
Customer_Type: str
|
| 143 |
+
Industry: str
|
| 144 |
+
Transaction_Date_Time: str
|
| 145 |
+
Transaction_Type: str
|
| 146 |
+
Transaction_Channel: str
|
| 147 |
+
Originating_Bank: str
|
| 148 |
+
Beneficiary_Bank: str
|
| 149 |
+
Geographic_Origin: str
|
| 150 |
+
Geographic_Destination: str
|
| 151 |
+
Match_Score: float
|
| 152 |
+
Match_Type: str
|
| 153 |
+
Sanctions_List_Version: str
|
| 154 |
+
Screening_Date_Time: str
|
| 155 |
+
Risk_Category: str
|
| 156 |
+
Risk_Drivers: str
|
| 157 |
+
Alert_Status: str
|
| 158 |
+
Investigation_Outcome: str
|
| 159 |
+
Case_Owner_Analyst: str
|
| 160 |
+
Escalation_Level: str
|
| 161 |
+
Escalation_Date: str
|
| 162 |
+
Regulatory_Reporting_Flags: bool
|
| 163 |
+
Audit_Trail_Timestamp: str
|
| 164 |
+
Source_Of_Funds: str
|
| 165 |
+
Purpose_Of_Transaction: str
|
| 166 |
+
Beneficial_Owner: str
|
| 167 |
+
Sanctions_Exposure_History: bool
|
| 168 |
+
|
| 169 |
+
class PredictionRequest(BaseModel):
|
| 170 |
+
transaction_data: TransactionData
|
| 171 |
+
model_name: str = "ROBERTA_model" # Default to RoBERTa_model if not specified
|
| 172 |
+
|
| 173 |
+
class BatchPredictionResponse(BaseModel):
|
| 174 |
+
message: str
|
| 175 |
+
predictions: List[Dict[str, Any]]
|
| 176 |
+
metrics: Optional[Dict[str, Any]] = None
|
| 177 |
+
|
| 178 |
+
@app.get("/")
|
| 179 |
+
async def root():
|
| 180 |
+
return {"message": "RoBERTa Compliance Predictor API"}
|
| 181 |
+
|
| 182 |
+
@app.get("/v1/roberta/health")
|
| 183 |
+
async def health_check():
|
| 184 |
+
return {"status": "healthy"}
|
| 185 |
+
|
| 186 |
+
@app.get("/v1/roberta/training-status")
|
| 187 |
+
async def get_training_status():
|
| 188 |
+
return training_status
|
| 189 |
+
|
| 190 |
+
@app.post("/v1/roberta/train", response_model=TrainingResponse)
|
| 191 |
+
async def start_training(
|
| 192 |
+
config: str = Form(...),
|
| 193 |
+
background_tasks: BackgroundTasks = None,
|
| 194 |
+
file: UploadFile = File(...)
|
| 195 |
+
):
|
| 196 |
+
if training_status["is_training"]:
|
| 197 |
+
raise HTTPException(status_code=400, detail="Training is already in progress")
|
| 198 |
+
|
| 199 |
+
if not file.filename.endswith('.csv'):
|
| 200 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 201 |
+
|
| 202 |
+
try:
|
| 203 |
+
# Parse the config JSON string into a TrainingConfig object
|
| 204 |
+
config_dict = json.loads(config)
|
| 205 |
+
training_config = TrainingConfig(**config_dict)
|
| 206 |
+
except json.JSONDecodeError:
|
| 207 |
+
raise HTTPException(status_code=400, detail="Invalid config JSON format")
|
| 208 |
+
except Exception as e:
|
| 209 |
+
raise HTTPException(status_code=400, detail=f"Invalid config parameters: {str(e)}")
|
| 210 |
+
|
| 211 |
+
file_path = UPLOAD_DIR / file.filename
|
| 212 |
+
with file_path.open("wb") as buffer:
|
| 213 |
+
shutil.copyfileobj(file.file, buffer)
|
| 214 |
+
|
| 215 |
+
training_id = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 216 |
+
|
| 217 |
+
training_status.update({
|
| 218 |
+
"is_training": True,
|
| 219 |
+
"current_epoch": 0,
|
| 220 |
+
"total_epochs": training_config.num_epochs,
|
| 221 |
+
"start_time": datetime.now().isoformat(),
|
| 222 |
+
"status": "starting"
|
| 223 |
+
})
|
| 224 |
+
|
| 225 |
+
background_tasks.add_task(train_model_task, training_config, str(file_path), training_id)
|
| 226 |
+
|
| 227 |
+
download_url = f"/v1/roberta/download-model/{training_id}"
|
| 228 |
+
|
| 229 |
+
return TrainingResponse(
|
| 230 |
+
message="Training started successfully",
|
| 231 |
+
training_id=training_id,
|
| 232 |
+
status="started",
|
| 233 |
+
download_url=download_url
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
@app.post("/v1/roberta/validate")
|
| 237 |
+
async def validate_model(
|
| 238 |
+
file: UploadFile = File(...),
|
| 239 |
+
model_name: str = "ROBERTA_model"
|
| 240 |
+
):
|
| 241 |
+
"""Validate a RoBERTa model on uploaded data"""
|
| 242 |
+
if not file.filename.endswith('.csv'):
|
| 243 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 244 |
+
|
| 245 |
+
try:
|
| 246 |
+
file_path = UPLOAD_DIR / file.filename
|
| 247 |
+
with file_path.open("wb") as buffer:
|
| 248 |
+
shutil.copyfileobj(file.file, buffer)
|
| 249 |
+
|
| 250 |
+
data_df, label_encoders = load_and_preprocess_data(str(file_path))
|
| 251 |
+
|
| 252 |
+
model_path = MODEL_SAVE_DIR / f"{model_name}.pth"
|
| 253 |
+
if not model_path.exists():
|
| 254 |
+
raise HTTPException(status_code=404, detail="RoBERTa model file not found")
|
| 255 |
+
|
| 256 |
+
num_labels_list = [len(label_encoders[col].classes_) for col in LABEL_COLUMNS]
|
| 257 |
+
metadata_df = data_df[METADATA_COLUMNS] if METADATA_COLUMNS and all(col in data_df.columns for col in METADATA_COLUMNS) else None
|
| 258 |
+
|
| 259 |
+
if metadata_df is not None:
|
| 260 |
+
metadata_dim = metadata_df.shape[1]
|
| 261 |
+
model = RobertaMultiOutputModel(num_labels_list, metadata_dim=metadata_dim).to(DEVICE)
|
| 262 |
+
else:
|
| 263 |
+
model = RobertaMultiOutputModel(num_labels_list).to(DEVICE)
|
| 264 |
+
|
| 265 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 266 |
+
model.eval()
|
| 267 |
+
|
| 268 |
+
texts = data_df[TEXT_COLUMN]
|
| 269 |
+
labels_array = data_df[LABEL_COLUMNS].values
|
| 270 |
+
tokenizer = get_tokenizer("roberta-base")
|
| 271 |
+
|
| 272 |
+
if metadata_df is not None:
|
| 273 |
+
dataset = ComplianceDatasetWithMetadata(
|
| 274 |
+
texts.tolist(),
|
| 275 |
+
metadata_df.values,
|
| 276 |
+
labels_array,
|
| 277 |
+
tokenizer,
|
| 278 |
+
MAX_LEN
|
| 279 |
+
)
|
| 280 |
+
else:
|
| 281 |
+
dataset = ComplianceDataset(
|
| 282 |
+
texts.tolist(),
|
| 283 |
+
labels_array,
|
| 284 |
+
tokenizer,
|
| 285 |
+
MAX_LEN
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE)
|
| 289 |
+
metrics, y_true_list, y_pred_list = evaluate_model(model, dataloader)
|
| 290 |
+
summary_metrics = summarize_metrics(metrics).to_dict()
|
| 291 |
+
|
| 292 |
+
all_probs = predict_probabilities(model, dataloader)
|
| 293 |
+
|
| 294 |
+
predictions = []
|
| 295 |
+
for i, (true_labels, pred_labels) in enumerate(zip(y_true_list, y_pred_list)):
|
| 296 |
+
field = LABEL_COLUMNS[i]
|
| 297 |
+
label_encoder = label_encoders[field]
|
| 298 |
+
true_labels_orig = label_encoder.inverse_transform(true_labels)
|
| 299 |
+
pred_labels_orig = label_encoder.inverse_transform(pred_labels)
|
| 300 |
+
|
| 301 |
+
for true, pred, probs in zip(true_labels_orig, pred_labels_orig, all_probs[i]):
|
| 302 |
+
predictions.append({
|
| 303 |
+
"field": field,
|
| 304 |
+
"true_label": true,
|
| 305 |
+
"predicted_label": pred,
|
| 306 |
+
"probabilities": probs.tolist()
|
| 307 |
+
})
|
| 308 |
+
|
| 309 |
+
return ValidationResponse(
|
| 310 |
+
message="Validation completed successfully",
|
| 311 |
+
metrics=summary_metrics,
|
| 312 |
+
predictions=predictions
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
except Exception as e:
|
| 316 |
+
logger.error(f"Validation failed: {str(e)}")
|
| 317 |
+
raise HTTPException(status_code=500, detail=f"Validation failed: {str(e)}")
|
| 318 |
+
finally:
|
| 319 |
+
if os.path.exists(file_path):
|
| 320 |
+
os.remove(file_path)
|
| 321 |
+
|
| 322 |
+
@app.post("/v1/roberta/predict")
|
| 323 |
+
async def predict(
|
| 324 |
+
request: Optional[PredictionRequest] = None,
|
| 325 |
+
file: UploadFile = File(None),
|
| 326 |
+
model_name: str = "ROBERTA_model"
|
| 327 |
+
):
|
| 328 |
+
"""
|
| 329 |
+
Make predictions on either a single transaction or a batch of transactions from a CSV file.
|
| 330 |
+
|
| 331 |
+
You can either:
|
| 332 |
+
1. Send a single transaction in the request body
|
| 333 |
+
2. Upload a CSV file with multiple transactions
|
| 334 |
+
|
| 335 |
+
Parameters:
|
| 336 |
+
- file: CSV file containing transactions for batch prediction
|
| 337 |
+
- model_name: Name of the model to use for prediction (default: "ROBERTA_model")
|
| 338 |
+
"""
|
| 339 |
+
try:
|
| 340 |
+
# Load the model
|
| 341 |
+
model_path = MODEL_SAVE_DIR / f"{model_name}.pth"
|
| 342 |
+
if not model_path.exists():
|
| 343 |
+
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
|
| 344 |
+
|
| 345 |
+
num_labels_list = [len(load_label_encoders()[col].classes_) for col in LABEL_COLUMNS]
|
| 346 |
+
model = RobertaMultiOutputModel(num_labels_list).to(DEVICE)
|
| 347 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 348 |
+
model.eval()
|
| 349 |
+
|
| 350 |
+
# Handle batch prediction from CSV
|
| 351 |
+
if file and file.filename:
|
| 352 |
+
if not file.filename.endswith('.csv'):
|
| 353 |
+
raise HTTPException(status_code=400, detail="Only CSV files are allowed")
|
| 354 |
+
|
| 355 |
+
file_path = UPLOAD_DIR / file.filename
|
| 356 |
+
with file_path.open("wb") as buffer:
|
| 357 |
+
shutil.copyfileobj(file.file, buffer)
|
| 358 |
+
|
| 359 |
+
try:
|
| 360 |
+
# Load and preprocess the CSV data
|
| 361 |
+
data_df, _ = load_and_preprocess_data(str(file_path))
|
| 362 |
+
texts = data_df[TEXT_COLUMN]
|
| 363 |
+
|
| 364 |
+
# Create dataset and dataloader
|
| 365 |
+
dataset = ComplianceDataset(
|
| 366 |
+
texts.tolist(),
|
| 367 |
+
[[0] * len(LABEL_COLUMNS)] * len(texts), # Dummy labels for prediction
|
| 368 |
+
tokenizer,
|
| 369 |
+
MAX_LEN
|
| 370 |
+
)
|
| 371 |
+
loader = DataLoader(dataset, batch_size=BATCH_SIZE)
|
| 372 |
+
|
| 373 |
+
# Get predictions
|
| 374 |
+
all_probabilities = predict_probabilities(model, loader)
|
| 375 |
+
label_encoders = load_label_encoders()
|
| 376 |
+
|
| 377 |
+
# Process predictions
|
| 378 |
+
predictions = []
|
| 379 |
+
for i, row in data_df.iterrows():
|
| 380 |
+
transaction_pred = {}
|
| 381 |
+
for j, (col, probs) in enumerate(zip(LABEL_COLUMNS, all_probabilities)):
|
| 382 |
+
pred = np.argmax(probs[i])
|
| 383 |
+
decoded_pred = label_encoders[col].inverse_transform([pred])[0]
|
| 384 |
+
|
| 385 |
+
class_probs = {
|
| 386 |
+
label: float(probs[i][j])
|
| 387 |
+
for j, label in enumerate(label_encoders[col].classes_)
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
transaction_pred[col] = {
|
| 391 |
+
"prediction": decoded_pred,
|
| 392 |
+
"probabilities": class_probs
|
| 393 |
+
}
|
| 394 |
+
|
| 395 |
+
predictions.append({
|
| 396 |
+
"transaction_id": row.get('Transaction_Id', f"transaction_{i}"),
|
| 397 |
+
"predictions": transaction_pred
|
| 398 |
+
})
|
| 399 |
+
|
| 400 |
+
return BatchPredictionResponse(
|
| 401 |
+
message="Batch prediction completed successfully",
|
| 402 |
+
predictions=predictions
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
finally:
|
| 406 |
+
if os.path.exists(file_path):
|
| 407 |
+
os.remove(file_path)
|
| 408 |
+
|
| 409 |
+
# Handle single prediction
|
| 410 |
+
elif request and request.transaction_data:
|
| 411 |
+
input_data = pd.DataFrame([request.transaction_data.dict()])
|
| 412 |
+
|
| 413 |
+
text_input = f"<s>Transaction ID: {input_data['Transaction_Id'].iloc[0]} Origin: {input_data['Origin'].iloc[0]} Designation: {input_data['Designation'].iloc[0]} Keywords: {input_data['Keywords'].iloc[0]} Name: {input_data['Name'].iloc[0]} SWIFT Tag: {input_data['SWIFT_Tag'].iloc[0]} Currency: {input_data['Currency'].iloc[0]} Entity: {input_data['Entity'].iloc[0]} Message: {input_data['Message'].iloc[0]} City: {input_data['City'].iloc[0]} Country: {input_data['Country'].iloc[0]} State: {input_data['State'].iloc[0]} Hit Type: {input_data['Hit_Type'].iloc[0]} Record Matching String: {input_data['Record_Matching_String'].iloc[0]} WatchList Match String: {input_data['WatchList_Match_String'].iloc[0]} Payment Sender: {input_data['Payment_Sender_Name'].iloc[0]} Payment Receiver: {input_data['Payment_Reciever_Name'].iloc[0]} Swift Message Type: {input_data['Swift_Message_Type'].iloc[0]} Text Sanction Data: {input_data['Text_Sanction_Data'].iloc[0]} Matched Sanctioned Entity: {input_data['Matched_Sanctioned_Entity'].iloc[0]} Red Flag Reason: {input_data['Red_Flag_Reason'].iloc[0]} Risk Level: {input_data['Risk_Level'].iloc[0]} Risk Score: {input_data['Risk_Score'].iloc[0]} CDD Level: {input_data['CDD_Level'].iloc[0]} PEP Status: {input_data['PEP_Status'].iloc[0]} Sanction Description: {input_data['Sanction_Description'].iloc[0]} Checker Notes: {input_data['Checker_Notes'].iloc[0]} Sanction Context: {input_data['Sanction_Context'].iloc[0]}</s>"
|
| 414 |
+
|
| 415 |
+
dataset = ComplianceDataset(
|
| 416 |
+
texts=[text_input],
|
| 417 |
+
labels=[[0] * len(LABEL_COLUMNS)],
|
| 418 |
+
tokenizer=tokenizer,
|
| 419 |
+
max_len=MAX_LEN
|
| 420 |
+
)
|
| 421 |
+
|
| 422 |
+
loader = DataLoader(dataset, batch_size=1, shuffle=False)
|
| 423 |
+
all_probabilities = predict_probabilities(model, loader)
|
| 424 |
+
|
| 425 |
+
label_encoders = load_label_encoders()
|
| 426 |
+
|
| 427 |
+
response = {}
|
| 428 |
+
for i, (col, probs) in enumerate(zip(LABEL_COLUMNS, all_probabilities)):
|
| 429 |
+
pred = np.argmax(probs[0])
|
| 430 |
+
decoded_pred = label_encoders[col].inverse_transform([pred])[0]
|
| 431 |
+
|
| 432 |
+
class_probs = {
|
| 433 |
+
label: float(probs[0][j])
|
| 434 |
+
for j, label in enumerate(label_encoders[col].classes_)
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
response[col] = {
|
| 438 |
+
"prediction": decoded_pred,
|
| 439 |
+
"probabilities": class_probs
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
return response
|
| 443 |
+
|
| 444 |
+
else:
|
| 445 |
+
raise HTTPException(
|
| 446 |
+
status_code=400,
|
| 447 |
+
detail="Either provide a transaction in the request body or upload a CSV file"
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
except Exception as e:
|
| 451 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 452 |
+
|
| 453 |
+
@app.get("/v1/roberta/download-model/{model_id}")
|
| 454 |
+
async def download_model(model_id: str):
|
| 455 |
+
"""Download a trained model"""
|
| 456 |
+
model_path = MODEL_SAVE_DIR / f"{model_id}.pth"
|
| 457 |
+
if not model_path.exists():
|
| 458 |
+
raise HTTPException(status_code=404, detail="Model not found")
|
| 459 |
+
|
| 460 |
+
return FileResponse(
|
| 461 |
+
path=model_path,
|
| 462 |
+
filename=f"roberta_model_{model_id}.pth",
|
| 463 |
+
media_type="application/octet-stream"
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
async def train_model_task(config: TrainingConfig, file_path: str, training_id: str):
|
| 467 |
+
try:
|
| 468 |
+
data_df_original, label_encoders = load_and_preprocess_data(file_path)
|
| 469 |
+
save_label_encoders(label_encoders)
|
| 470 |
+
|
| 471 |
+
texts = data_df_original[TEXT_COLUMN]
|
| 472 |
+
labels_array = data_df_original[LABEL_COLUMNS].values
|
| 473 |
+
|
| 474 |
+
metadata_df = data_df_original[METADATA_COLUMNS] if METADATA_COLUMNS and all(col in data_df_original.columns for col in METADATA_COLUMNS) else None
|
| 475 |
+
|
| 476 |
+
num_labels_list = get_num_labels(label_encoders)
|
| 477 |
+
tokenizer = get_tokenizer(config.model_name)
|
| 478 |
+
|
| 479 |
+
if metadata_df is not None:
|
| 480 |
+
metadata_dim = metadata_df.shape[1]
|
| 481 |
+
dataset = ComplianceDatasetWithMetadata(
|
| 482 |
+
texts.tolist(),
|
| 483 |
+
metadata_df.values,
|
| 484 |
+
labels_array,
|
| 485 |
+
tokenizer,
|
| 486 |
+
config.max_length
|
| 487 |
+
)
|
| 488 |
+
model = RobertaMultiOutputModel(num_labels_list, metadata_dim=metadata_dim).to(DEVICE)
|
| 489 |
+
else:
|
| 490 |
+
dataset = ComplianceDataset(
|
| 491 |
+
texts.tolist(),
|
| 492 |
+
labels_array,
|
| 493 |
+
tokenizer,
|
| 494 |
+
config.max_length
|
| 495 |
+
)
|
| 496 |
+
model = RobertaMultiOutputModel(num_labels_list).to(DEVICE)
|
| 497 |
+
|
| 498 |
+
train_loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True)
|
| 499 |
+
|
| 500 |
+
criterions = initialize_criterions(num_labels_list)
|
| 501 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
|
| 502 |
+
|
| 503 |
+
for epoch in range(config.num_epochs):
|
| 504 |
+
training_status["current_epoch"] = epoch + 1
|
| 505 |
+
|
| 506 |
+
train_loss = train_model(model, train_loader, criterions, optimizer)
|
| 507 |
+
training_status["current_loss"] = train_loss
|
| 508 |
+
|
| 509 |
+
# Save model after each epoch
|
| 510 |
+
save_model(model, training_id)
|
| 511 |
+
|
| 512 |
+
training_status.update({
|
| 513 |
+
"is_training": False,
|
| 514 |
+
"end_time": datetime.now().isoformat(),
|
| 515 |
+
"status": "completed"
|
| 516 |
+
})
|
| 517 |
+
|
| 518 |
+
except Exception as e:
|
| 519 |
+
logger.error(f"Training failed: {str(e)}")
|
| 520 |
+
training_status.update({
|
| 521 |
+
"is_training": False,
|
| 522 |
+
"end_time": datetime.now().isoformat(),
|
| 523 |
+
"status": "failed",
|
| 524 |
+
"error": str(e)
|
| 525 |
+
})
|
| 526 |
+
|
| 527 |
+
if __name__ == "__main__":
|
| 528 |
+
port = int(os.environ.get("PORT", 7860))
|
| 529 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
config.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# config.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# --- Paths ---
|
| 7 |
+
# Adjust DATA_PATH to your actual data location
|
| 8 |
+
DATA_PATH = './data/synthetic_transactions_samples_5000.csv'
|
| 9 |
+
TOKENIZER_PATH = './tokenizer/'
|
| 10 |
+
LABEL_ENCODERS_PATH = './label_encoders.pkl'
|
| 11 |
+
MODEL_SAVE_DIR = './saved_models/'
|
| 12 |
+
PREDICTIONS_SAVE_DIR = './predictions/' # To save predictions for voting ensemble
|
| 13 |
+
|
| 14 |
+
# --- Data Columns ---
|
| 15 |
+
TEXT_COLUMN = "Sanction_Context"
|
| 16 |
+
# Define all your target label columns
|
| 17 |
+
LABEL_COLUMNS = [
|
| 18 |
+
"Red_Flag_Reason",
|
| 19 |
+
"Maker_Action",
|
| 20 |
+
"Escalation_Level",
|
| 21 |
+
"Risk_Category",
|
| 22 |
+
"Risk_Drivers",
|
| 23 |
+
"Investigation_Outcome"
|
| 24 |
+
]
|
| 25 |
+
# Example metadata columns. Add actual numerical/categorical metadata if available in your CSV.
|
| 26 |
+
# For now, it's an empty list. If you add metadata, ensure these columns exist and are numeric or can be encoded.
|
| 27 |
+
METADATA_COLUMNS = [] # e.g., ["Risk_Score", "Transaction_Amount"]
|
| 28 |
+
|
| 29 |
+
# --- Model Hyperparameters ---
|
| 30 |
+
MAX_LEN = 128 # Maximum sequence length for transformer tokenizers
|
| 31 |
+
BATCH_SIZE = 16 # Batch size for training and evaluation
|
| 32 |
+
LEARNING_RATE = 2e-5 # Learning rate for AdamW optimizer
|
| 33 |
+
NUM_EPOCHS = 3 # Number of training epochs. Adjust based on convergence.
|
| 34 |
+
DROPOUT_RATE = 0.3 # Dropout rate for regularization
|
| 35 |
+
|
| 36 |
+
# --- Device Configuration ---
|
| 37 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 38 |
+
|
| 39 |
+
# --- Specific Model Configurations ---
|
| 40 |
+
ROBERTA_MODEL_NAME = 'roberta-base'
|
| 41 |
+
BERT_MODEL_NAME = 'bert-base-uncased'
|
| 42 |
+
DEBERTA_MODEL_NAME = 'microsoft/deberta-base'
|
| 43 |
+
|
| 44 |
+
# TF-IDF
|
| 45 |
+
TFIDF_MAX_FEATURES = 5000 # Max features for TF-IDF vectorizer
|
| 46 |
+
|
| 47 |
+
# --- Field-Specific Strategy (Conceptual) ---
|
| 48 |
+
# This dictionary provides conceptual strategies for enhancing specific fields.
|
| 49 |
+
# Actual implementation requires adapting the models (e.g., custom loss functions, metadata integration).
|
| 50 |
+
FIELD_STRATEGIES = {
|
| 51 |
+
"Maker_Action": {
|
| 52 |
+
"loss": "focal_loss", # Requires custom Focal Loss implementation
|
| 53 |
+
"enhancements": ["action_templates", "context_prompt_tuning"] # Advanced NLP concepts
|
| 54 |
+
},
|
| 55 |
+
"Risk_Category": {
|
| 56 |
+
"enhancements": ["numerical_metadata", "transaction_patterns"] # Integrate METADATA_COLUMNS
|
| 57 |
+
},
|
| 58 |
+
"Escalation_Level": {
|
| 59 |
+
"enhancements": ["class_balancing", "policy_keyword_patterns"] # Handled by class weights/metadata
|
| 60 |
+
},
|
| 61 |
+
"Investigation_Outcome": {
|
| 62 |
+
"type": "classification_or_generation" # If generation, T5/BART would be needed.
|
| 63 |
+
}
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
# Ensure model save and predictions directories exist
|
| 67 |
+
os.makedirs(MODEL_SAVE_DIR, exist_ok=True)
|
| 68 |
+
os.makedirs(PREDICTIONS_SAVE_DIR, exist_ok=True)
|
| 69 |
+
os.makedirs(TOKENIZER_PATH, exist_ok=True)
|
dataset_utils.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# dataset_utils.py
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import Dataset, DataLoader
|
| 6 |
+
from sklearn.preprocessing import LabelEncoder
|
| 7 |
+
from transformers import BertTokenizer, RobertaTokenizer, DebertaTokenizer
|
| 8 |
+
import pickle
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
from config import TEXT_COLUMN, LABEL_COLUMNS, MAX_LEN, TOKENIZER_PATH, LABEL_ENCODERS_PATH, METADATA_COLUMNS
|
| 12 |
+
|
| 13 |
+
class ComplianceDataset(Dataset):
|
| 14 |
+
"""
|
| 15 |
+
Custom Dataset class for handling text and multi-output labels for PyTorch models.
|
| 16 |
+
"""
|
| 17 |
+
def __init__(self, texts, labels, tokenizer, max_len):
|
| 18 |
+
self.texts = texts
|
| 19 |
+
self.labels = labels
|
| 20 |
+
self.tokenizer = tokenizer
|
| 21 |
+
self.max_len = max_len
|
| 22 |
+
|
| 23 |
+
def __len__(self):
|
| 24 |
+
"""Returns the total number of samples in the dataset."""
|
| 25 |
+
return len(self.texts)
|
| 26 |
+
|
| 27 |
+
def __getitem__(self, idx):
|
| 28 |
+
"""
|
| 29 |
+
Retrieves a sample from the dataset at the given index.
|
| 30 |
+
Tokenizes the text and converts labels to a PyTorch tensor.
|
| 31 |
+
"""
|
| 32 |
+
text = str(self.texts[idx])
|
| 33 |
+
# Tokenize the text, padding to max_length and truncating if longer.
|
| 34 |
+
# return_tensors="pt" ensures PyTorch tensors are returned.
|
| 35 |
+
inputs = self.tokenizer(
|
| 36 |
+
text,
|
| 37 |
+
padding='max_length',
|
| 38 |
+
truncation=True,
|
| 39 |
+
max_length=self.max_len,
|
| 40 |
+
return_tensors="pt"
|
| 41 |
+
)
|
| 42 |
+
# Squeeze removes the batch dimension (which is 1 here because we process one sample at a time)
|
| 43 |
+
inputs = {key: val.squeeze(0) for key, val in inputs.items()}
|
| 44 |
+
# Convert labels to a PyTorch long tensor
|
| 45 |
+
labels = torch.tensor(self.labels[idx], dtype=torch.long)
|
| 46 |
+
return inputs, labels
|
| 47 |
+
|
| 48 |
+
class ComplianceDatasetWithMetadata(Dataset):
|
| 49 |
+
"""
|
| 50 |
+
Custom Dataset class for handling text, additional numerical metadata, and multi-output labels.
|
| 51 |
+
Used for hybrid models combining text and tabular features.
|
| 52 |
+
"""
|
| 53 |
+
def __init__(self, texts, metadata, labels, tokenizer, max_len):
|
| 54 |
+
self.texts = texts
|
| 55 |
+
self.metadata = metadata # Expects metadata as a NumPy array or list of lists
|
| 56 |
+
self.labels = labels
|
| 57 |
+
self.tokenizer = tokenizer
|
| 58 |
+
self.max_len = max_len
|
| 59 |
+
|
| 60 |
+
def __len__(self):
|
| 61 |
+
"""Returns the total number of samples in the dataset."""
|
| 62 |
+
return len(self.texts)
|
| 63 |
+
|
| 64 |
+
def __getitem__(self, idx):
|
| 65 |
+
"""
|
| 66 |
+
Retrieves a sample, its metadata, and labels from the dataset at the given index.
|
| 67 |
+
Tokenizes text, converts metadata and labels to PyTorch tensors.
|
| 68 |
+
"""
|
| 69 |
+
text = str(self.texts[idx])
|
| 70 |
+
inputs = self.tokenizer(
|
| 71 |
+
text,
|
| 72 |
+
padding='max_length',
|
| 73 |
+
truncation=True,
|
| 74 |
+
max_length=self.max_len,
|
| 75 |
+
return_tensors="pt"
|
| 76 |
+
)
|
| 77 |
+
inputs = {key: val.squeeze(0) for key, val in inputs.items()}
|
| 78 |
+
# Convert metadata for the current sample to a float tensor
|
| 79 |
+
metadata = torch.tensor(self.metadata[idx], dtype=torch.float)
|
| 80 |
+
labels = torch.tensor(self.labels[idx], dtype=torch.long)
|
| 81 |
+
return inputs, metadata, labels
|
| 82 |
+
|
| 83 |
+
def load_and_preprocess_data(data_path):
|
| 84 |
+
"""
|
| 85 |
+
Loads data from a CSV, fills missing values, and encodes categorical labels.
|
| 86 |
+
Also handles converting specified METADATA_COLUMNS to numeric.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
data_path (str): Path to the CSV data file.
|
| 90 |
+
|
| 91 |
+
Returns:
|
| 92 |
+
tuple: A tuple containing:
|
| 93 |
+
- data (pd.DataFrame): The preprocessed DataFrame.
|
| 94 |
+
- label_encoders (dict): A dictionary of LabelEncoder objects for each label column.
|
| 95 |
+
"""
|
| 96 |
+
data = pd.read_csv(data_path)
|
| 97 |
+
data.fillna("Unknown", inplace=True) # Fill any missing text values with "Unknown"
|
| 98 |
+
|
| 99 |
+
# Convert metadata columns to numeric, coercing errors and filling NaNs with 0
|
| 100 |
+
# This ensures metadata is suitable for neural networks.
|
| 101 |
+
for col in METADATA_COLUMNS:
|
| 102 |
+
if col in data.columns:
|
| 103 |
+
data[col] = pd.to_numeric(data[col], errors='coerce').fillna(0) # Fill NaN with 0 or a suitable value
|
| 104 |
+
|
| 105 |
+
label_encoders = {col: LabelEncoder() for col in LABEL_COLUMNS}
|
| 106 |
+
for col in LABEL_COLUMNS:
|
| 107 |
+
# Fit and transform each label column using its respective LabelEncoder
|
| 108 |
+
data[col] = label_encoders[col].fit_transform(data[col])
|
| 109 |
+
return data, label_encoders
|
| 110 |
+
|
| 111 |
+
def get_tokenizer(model_name):
|
| 112 |
+
"""
|
| 113 |
+
Returns the appropriate Hugging Face tokenizer based on the model name.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
model_name (str): The name of the pre-trained model (e.g., 'bert-base-uncased').
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
transformers.PreTrainedTokenizer: The initialized tokenizer.
|
| 120 |
+
"""
|
| 121 |
+
if "roberta" in model_name.lower():
|
| 122 |
+
return RobertaTokenizer.from_pretrained(model_name)
|
| 123 |
+
elif "bert" in model_name.lower():
|
| 124 |
+
return BertTokenizer.from_pretrained(model_name)
|
| 125 |
+
elif "deberta" in model_name.lower():
|
| 126 |
+
return DebertaTokenizer.from_pretrained(model_name)
|
| 127 |
+
else:
|
| 128 |
+
raise ValueError(f"Unsupported tokenizer for model: {model_name}")
|
| 129 |
+
|
| 130 |
+
def save_label_encoders(label_encoders):
|
| 131 |
+
"""
|
| 132 |
+
Saves a dictionary of label encoders to a pickle file.
|
| 133 |
+
This is crucial for decoding predictions back to original labels.
|
| 134 |
+
|
| 135 |
+
Args:
|
| 136 |
+
label_encoders (dict): Dictionary of LabelEncoder objects.
|
| 137 |
+
"""
|
| 138 |
+
with open(LABEL_ENCODERS_PATH, "wb") as f:
|
| 139 |
+
pickle.dump(label_encoders, f)
|
| 140 |
+
print(f"Label encoders saved to {LABEL_ENCODERS_PATH}")
|
| 141 |
+
|
| 142 |
+
def load_label_encoders():
|
| 143 |
+
"""
|
| 144 |
+
Loads a dictionary of label encoders from a pickle file.
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
dict: Loaded dictionary of LabelEncoder objects.
|
| 148 |
+
"""
|
| 149 |
+
with open(LABEL_ENCODERS_PATH, "rb") as f:
|
| 150 |
+
return pickle.load(f)
|
| 151 |
+
print(f"Label encoders loaded from {LABEL_ENCODERS_PATH}")
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def get_num_labels(label_encoders):
|
| 155 |
+
"""
|
| 156 |
+
Returns a list containing the number of unique classes for each label column.
|
| 157 |
+
This list is used to define the output dimensions of the model's classification heads.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
label_encoders (dict): Dictionary of LabelEncoder objects.
|
| 161 |
+
|
| 162 |
+
Returns:
|
| 163 |
+
list: A list of integers, where each integer is the number of classes for a label.
|
| 164 |
+
"""
|
| 165 |
+
return [len(label_encoders[col].classes_) for col in LABEL_COLUMNS]
|
dockerfile
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.9 as base image
|
| 2 |
+
FROM python:3.9-slim
|
| 3 |
+
|
| 4 |
+
# Set working directory
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
|
| 7 |
+
# Install system dependencies
|
| 8 |
+
RUN apt-get update && apt-get install -y \
|
| 9 |
+
build-essential \
|
| 10 |
+
curl \
|
| 11 |
+
software-properties-common \
|
| 12 |
+
git \
|
| 13 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 14 |
+
|
| 15 |
+
# Copy requirements file
|
| 16 |
+
COPY requirements.txt .
|
| 17 |
+
|
| 18 |
+
# Install Python dependencies
|
| 19 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 20 |
+
|
| 21 |
+
# Create necessary directories with proper permissions
|
| 22 |
+
RUN mkdir -p /app/uploads \
|
| 23 |
+
/app/saved_models/bert \
|
| 24 |
+
/app/predictions \
|
| 25 |
+
/app/tokenizer \
|
| 26 |
+
/app/cache \
|
| 27 |
+
&& chmod -R 777 /app/uploads \
|
| 28 |
+
/app/saved_models \
|
| 29 |
+
/app/predictions \
|
| 30 |
+
/app/tokenizer \
|
| 31 |
+
/app/cache
|
| 32 |
+
|
| 33 |
+
# Copy the application code and utilities
|
| 34 |
+
COPY . /app/
|
| 35 |
+
COPY ../dataset_utils.py /app/
|
| 36 |
+
COPY ../train_utils.py /app/
|
| 37 |
+
COPY ../config.py /app/
|
| 38 |
+
COPY ../models/roberta_model.py /app/models/
|
| 39 |
+
COPY ../label_encoders.pkl /app/
|
| 40 |
+
|
| 41 |
+
# Set environment variables
|
| 42 |
+
ENV PYTHONPATH=/app
|
| 43 |
+
ENV PYTHONUNBUFFERED=1
|
| 44 |
+
ENV PORT=7860
|
| 45 |
+
ENV TRANSFORMERS_CACHE=/app/cache
|
| 46 |
+
|
| 47 |
+
# Expose the port the app runs on
|
| 48 |
+
EXPOSE 7860
|
| 49 |
+
|
| 50 |
+
# Command to run the application
|
| 51 |
+
CMD ["python", "app.py"]
|
label_encoders.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c336fd07858af76d40c7200de1a769099abeec25d4f48b999351318680d4e4d6
|
| 3 |
+
size 2047
|
models/__pycache__/roberta_model.cpython-311.pyc
ADDED
|
Binary file (3.19 kB). View file
|
|
|
models/roberta_model.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# models/roberta_model.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import RobertaModel
|
| 6 |
+
from config import DROPOUT_RATE, ROBERTA_MODEL_NAME # Import ROBERTA_MODEL_NAME
|
| 7 |
+
|
| 8 |
+
class RobertaMultiOutputModel(nn.Module):
|
| 9 |
+
"""
|
| 10 |
+
RoBERTa-based model for multi-output classification.
|
| 11 |
+
Uses a pre-trained RoBERTa model as its backbone. RoBERTa is an optimized
|
| 12 |
+
version of BERT, often performing better.
|
| 13 |
+
"""
|
| 14 |
+
# Statically set tokenizer name for easy access in main.py
|
| 15 |
+
tokenizer_name = ROBERTA_MODEL_NAME
|
| 16 |
+
|
| 17 |
+
def __init__(self, num_labels):
|
| 18 |
+
"""
|
| 19 |
+
Initializes the RobertaMultiOutputModel.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
num_labels (list): A list where each element is the number of classes
|
| 23 |
+
for a corresponding label column.
|
| 24 |
+
"""
|
| 25 |
+
super(RobertaMultiOutputModel, self).__init__()
|
| 26 |
+
# Load the pre-trained RoBERTa model.
|
| 27 |
+
# RoBERTa's pooler_output typically corresponds to the hidden state of the
|
| 28 |
+
# first token (<s>), which is often used for sequence classification.
|
| 29 |
+
self.roberta = RobertaModel.from_pretrained(ROBERTA_MODEL_NAME)
|
| 30 |
+
self.dropout = nn.Dropout(DROPOUT_RATE) # Dropout layer
|
| 31 |
+
|
| 32 |
+
# Create classification heads for each label column.
|
| 33 |
+
self.classifiers = nn.ModuleList([
|
| 34 |
+
nn.Linear(self.roberta.config.hidden_size, n_classes) for n_classes in num_labels
|
| 35 |
+
])
|
| 36 |
+
|
| 37 |
+
def forward(self, input_ids, attention_mask):
|
| 38 |
+
"""
|
| 39 |
+
Performs the forward pass of the model.
|
| 40 |
+
|
| 41 |
+
Args:
|
| 42 |
+
input_ids (torch.Tensor): Tensor of token IDs.
|
| 43 |
+
attention_mask (torch.Tensor): Tensor indicating attention.
|
| 44 |
+
|
| 45 |
+
Returns:
|
| 46 |
+
list: A list of logit tensors, one for each classification head.
|
| 47 |
+
"""
|
| 48 |
+
# Pass input_ids and attention_mask through RoBERTa.
|
| 49 |
+
# .pooler_output is used for classification.
|
| 50 |
+
pooled_output = self.roberta(input_ids=input_ids, attention_mask=attention_mask).pooler_output
|
| 51 |
+
|
| 52 |
+
# Apply dropout
|
| 53 |
+
pooled_output = self.dropout(pooled_output)
|
| 54 |
+
|
| 55 |
+
# Pass the pooled output through each classification head.
|
| 56 |
+
return [classifier(pooled_output) for classifier in self.classifiers]
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi==0.104.1
|
| 2 |
+
uvicorn==0.24.0
|
| 3 |
+
pydantic==2.4.2
|
| 4 |
+
torch==2.1.0
|
| 5 |
+
transformers==4.35.0
|
| 6 |
+
pandas==2.1.2
|
| 7 |
+
numpy==1.24.3
|
| 8 |
+
scikit-learn==1.3.2
|
| 9 |
+
python-multipart==0.0.6
|
| 10 |
+
python-jose==3.3.0
|
| 11 |
+
passlib==1.7.4
|
| 12 |
+
bcrypt==4.0.1
|
| 13 |
+
python-dotenv==1.0.0
|
saved_models/ROBERTA_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9850fc49de688e8971e6950fe06656da078f65c92eba58dd60a569172b0a089c
|
| 3 |
+
size 498897494
|
train_utils.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train_utils.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torch.optim import AdamW
|
| 6 |
+
from sklearn.metrics import classification_report
|
| 7 |
+
from sklearn.utils.class_weight import compute_class_weight
|
| 8 |
+
import numpy as np
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import os
|
| 12 |
+
import joblib
|
| 13 |
+
|
| 14 |
+
from config import DEVICE, LABEL_COLUMNS, NUM_EPOCHS, LEARNING_RATE, MODEL_SAVE_DIR
|
| 15 |
+
|
| 16 |
+
def get_class_weights(data_df, field, label_encoder):
|
| 17 |
+
"""
|
| 18 |
+
Computes balanced class weights for a given target field.
|
| 19 |
+
These weights can be used in the loss function to mitigate class imbalance.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
data_df (pd.DataFrame): The DataFrame containing the original (unencoded) label data.
|
| 23 |
+
field (str): The name of the label column for which to compute weights.
|
| 24 |
+
label_encoder (sklearn.preprocessing.LabelEncoder): The label encoder fitted for this field.
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
torch.Tensor: A tensor of class weights for the specified field.
|
| 28 |
+
"""
|
| 29 |
+
# Get the original labels for the specified field
|
| 30 |
+
y = data_df[field].values
|
| 31 |
+
# Use label_encoder.transform directly - it will handle unseen labels
|
| 32 |
+
try:
|
| 33 |
+
y_encoded = label_encoder.transform(y)
|
| 34 |
+
except ValueError as e:
|
| 35 |
+
print(f"Warning: {e}")
|
| 36 |
+
print(f"Using only seen labels for class weights calculation")
|
| 37 |
+
# Filter out unseen labels
|
| 38 |
+
seen_labels = set(label_encoder.classes_)
|
| 39 |
+
y_filtered = [label for label in y if label in seen_labels]
|
| 40 |
+
y_encoded = label_encoder.transform(y_filtered)
|
| 41 |
+
|
| 42 |
+
# Ensure y_encoded is integer type
|
| 43 |
+
y_encoded = y_encoded.astype(int)
|
| 44 |
+
|
| 45 |
+
# Initialize counts for all possible classes
|
| 46 |
+
n_classes = len(label_encoder.classes_)
|
| 47 |
+
class_counts = np.zeros(n_classes, dtype=int)
|
| 48 |
+
|
| 49 |
+
# Count occurrences of each class
|
| 50 |
+
for i in range(n_classes):
|
| 51 |
+
class_counts[i] = np.sum(y_encoded == i)
|
| 52 |
+
|
| 53 |
+
# Calculate weights for all classes
|
| 54 |
+
total_samples = len(y_encoded)
|
| 55 |
+
class_weights = np.ones(n_classes) # Default weight of 1 for unseen classes
|
| 56 |
+
seen_classes = class_counts > 0
|
| 57 |
+
if np.any(seen_classes):
|
| 58 |
+
class_weights[seen_classes] = total_samples / (np.sum(seen_classes) * class_counts[seen_classes])
|
| 59 |
+
|
| 60 |
+
return torch.tensor(class_weights, dtype=torch.float)
|
| 61 |
+
|
| 62 |
+
def initialize_criterions(data_df, label_encoders):
|
| 63 |
+
"""
|
| 64 |
+
Initializes CrossEntropyLoss criteria for each label column, applying class weights.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
data_df (pd.DataFrame): The original (unencoded) DataFrame. Used to compute class weights.
|
| 68 |
+
label_encoders (dict): Dictionary of LabelEncoder objects.
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
dict: A dictionary where keys are label column names and values are
|
| 72 |
+
initialized `torch.nn.CrossEntropyLoss` objects.
|
| 73 |
+
"""
|
| 74 |
+
field_criterions = {}
|
| 75 |
+
for field in LABEL_COLUMNS:
|
| 76 |
+
# Get class weights for the current field
|
| 77 |
+
weights = get_class_weights(data_df, field, label_encoders[field])
|
| 78 |
+
# Initialize CrossEntropyLoss with the computed weights and move to the device
|
| 79 |
+
field_criterions[field] = torch.nn.CrossEntropyLoss(weight=weights.to(DEVICE))
|
| 80 |
+
return field_criterions
|
| 81 |
+
|
| 82 |
+
def train_model(model, loader, optimizer, field_criterions, epoch):
|
| 83 |
+
"""
|
| 84 |
+
Trains the given PyTorch model for one epoch.
|
| 85 |
+
|
| 86 |
+
Args:
|
| 87 |
+
model (torch.nn.Module): The model to train.
|
| 88 |
+
loader (torch.utils.data.DataLoader): DataLoader for training data.
|
| 89 |
+
optimizer (torch.optim.Optimizer): Optimizer for model parameters.
|
| 90 |
+
field_criterions (dict): Dictionary of loss functions for each label.
|
| 91 |
+
epoch (int): Current epoch number (for progress bar description).
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
float: Average training loss for the epoch.
|
| 95 |
+
"""
|
| 96 |
+
model.train() # Set the model to training mode
|
| 97 |
+
total_loss = 0
|
| 98 |
+
# Use tqdm for a progress bar during training
|
| 99 |
+
tqdm_loader = tqdm(loader, desc=f"Epoch {epoch + 1} Training")
|
| 100 |
+
|
| 101 |
+
for batch in tqdm_loader:
|
| 102 |
+
# Unpack batch based on whether it contains metadata
|
| 103 |
+
if len(batch) == 2: # Text-only models (inputs, labels)
|
| 104 |
+
inputs, labels = batch
|
| 105 |
+
input_ids = inputs['input_ids'].to(DEVICE)
|
| 106 |
+
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 107 |
+
labels = labels.to(DEVICE)
|
| 108 |
+
# Forward pass through the model
|
| 109 |
+
outputs = model(input_ids, attention_mask)
|
| 110 |
+
elif len(batch) == 3: # Text + Metadata models (inputs, metadata, labels)
|
| 111 |
+
inputs, metadata, labels = batch
|
| 112 |
+
input_ids = inputs['input_ids'].to(DEVICE)
|
| 113 |
+
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 114 |
+
metadata = metadata.to(DEVICE)
|
| 115 |
+
labels = labels.to(DEVICE)
|
| 116 |
+
# Forward pass through the hybrid model
|
| 117 |
+
outputs = model(input_ids, attention_mask, metadata)
|
| 118 |
+
else:
|
| 119 |
+
raise ValueError("Unsupported batch format. Expected 2 or 3 items in batch.")
|
| 120 |
+
|
| 121 |
+
loss = 0
|
| 122 |
+
# Calculate total loss by summing loss for each label column
|
| 123 |
+
# `outputs` is a list of logits, one for each label column
|
| 124 |
+
for i, output_logits in enumerate(outputs):
|
| 125 |
+
# `labels[:, i]` gets the true labels for the i-th label column
|
| 126 |
+
# `field_criterions[LABEL_COLUMNS[i]]` selects the appropriate loss function
|
| 127 |
+
loss += field_criterions[LABEL_COLUMNS[i]](output_logits, labels[:, i])
|
| 128 |
+
|
| 129 |
+
optimizer.zero_grad() # Clear previous gradients
|
| 130 |
+
loss.backward() # Backpropagation
|
| 131 |
+
optimizer.step() # Update model parameters
|
| 132 |
+
total_loss += loss.item() # Accumulate loss
|
| 133 |
+
tqdm_loader.set_postfix(loss=loss.item()) # Update progress bar with current batch loss
|
| 134 |
+
|
| 135 |
+
return total_loss / len(loader) # Return average loss for the epoch
|
| 136 |
+
|
| 137 |
+
def evaluate_model(model, loader):
|
| 138 |
+
"""
|
| 139 |
+
Evaluates the given PyTorch model on a validation/test set.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
model (torch.nn.Module): The model to evaluate.
|
| 143 |
+
loader (torch.utils.data.DataLoader): DataLoader for evaluation data.
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
tuple: A tuple containing:
|
| 147 |
+
- reports (dict): Classification reports (dict format) for each label column.
|
| 148 |
+
- truths (list): List of true label arrays for each label column.
|
| 149 |
+
- predictions (list): List of predicted label arrays for each label column.
|
| 150 |
+
"""
|
| 151 |
+
model.eval() # Set the model to evaluation mode (disables dropout, batch norm updates, etc.)
|
| 152 |
+
# Initialize lists to store predictions and true labels for each output head
|
| 153 |
+
predictions = [[] for _ in range(len(LABEL_COLUMNS))]
|
| 154 |
+
truths = [[] for _ in range(len(LABEL_COLUMNS))]
|
| 155 |
+
|
| 156 |
+
with torch.no_grad(): # Disable gradient calculations during evaluation for efficiency
|
| 157 |
+
for batch in tqdm(loader, desc="Evaluation"):
|
| 158 |
+
if len(batch) == 2:
|
| 159 |
+
inputs, labels = batch
|
| 160 |
+
input_ids = inputs['input_ids'].to(DEVICE)
|
| 161 |
+
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 162 |
+
labels = labels.to(DEVICE)
|
| 163 |
+
outputs = model(input_ids, attention_mask)
|
| 164 |
+
elif len(batch) == 3:
|
| 165 |
+
inputs, metadata, labels = batch
|
| 166 |
+
input_ids = inputs['input_ids'].to(DEVICE)
|
| 167 |
+
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 168 |
+
metadata = metadata.to(DEVICE)
|
| 169 |
+
labels = labels.to(DEVICE)
|
| 170 |
+
outputs = model(input_ids, attention_mask, metadata)
|
| 171 |
+
else:
|
| 172 |
+
raise ValueError("Unsupported batch format.")
|
| 173 |
+
|
| 174 |
+
for i, output_logits in enumerate(outputs):
|
| 175 |
+
# Get the predicted class by taking the argmax of the logits
|
| 176 |
+
preds = torch.argmax(output_logits, dim=1).cpu().numpy()
|
| 177 |
+
predictions[i].extend(preds)
|
| 178 |
+
# Get the true labels for the current output head
|
| 179 |
+
truths[i].extend(labels[:, i].cpu().numpy())
|
| 180 |
+
|
| 181 |
+
reports = {}
|
| 182 |
+
# Generate classification report for each label column
|
| 183 |
+
for i, col in enumerate(LABEL_COLUMNS):
|
| 184 |
+
try:
|
| 185 |
+
# `zero_division=0` handles cases where a class might have no true or predicted samples
|
| 186 |
+
reports[col] = classification_report(truths[i], predictions[i], output_dict=True, zero_division=0)
|
| 187 |
+
except ValueError:
|
| 188 |
+
# Handle cases where a label might not appear in the validation set,
|
| 189 |
+
# which could cause classification_report to fail.
|
| 190 |
+
print(f"Warning: Could not generate classification report for {col}. Skipping.")
|
| 191 |
+
reports[col] = {'accuracy': 0, 'weighted avg': {'precision': 0, 'recall': 0, 'f1-score': 0, 'support': 0}}
|
| 192 |
+
return reports, truths, predictions
|
| 193 |
+
|
| 194 |
+
def summarize_metrics(metrics):
|
| 195 |
+
"""
|
| 196 |
+
Summarizes classification reports into a readable Pandas DataFrame.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
metrics (dict): Dictionary of classification reports, as returned by `evaluate_model`.
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
pd.DataFrame: A DataFrame summarizing precision, recall, f1-score, accuracy, and support for each field.
|
| 203 |
+
"""
|
| 204 |
+
summary = []
|
| 205 |
+
for field, report in metrics.items():
|
| 206 |
+
# Safely get metrics, defaulting to 0 if not present (e.g., for empty reports)
|
| 207 |
+
precision = report['weighted avg']['precision'] if 'weighted avg' in report else 0
|
| 208 |
+
recall = report['weighted avg']['recall'] if 'weighted avg' in report else 0
|
| 209 |
+
f1 = report['weighted avg']['f1-score'] if 'weighted avg' in report else 0
|
| 210 |
+
support = report['weighted avg']['support'] if 'weighted avg' in report else 0
|
| 211 |
+
accuracy = report['accuracy'] if 'accuracy' in report else 0 # Accuracy is usually top-level
|
| 212 |
+
summary.append({
|
| 213 |
+
"Field": field,
|
| 214 |
+
"Precision": precision,
|
| 215 |
+
"Recall": recall,
|
| 216 |
+
"F1-Score": f1,
|
| 217 |
+
"Accuracy": accuracy,
|
| 218 |
+
"Support": support
|
| 219 |
+
})
|
| 220 |
+
return pd.DataFrame(summary)
|
| 221 |
+
|
| 222 |
+
def save_model(model, model_name, save_format='pth'):
|
| 223 |
+
"""
|
| 224 |
+
Saves the state dictionary of a PyTorch model.
|
| 225 |
+
|
| 226 |
+
Args:
|
| 227 |
+
model (torch.nn.Module): The trained PyTorch model.
|
| 228 |
+
model_name (str): A descriptive name for the model (used for filename).
|
| 229 |
+
save_format (str): Format to save the model in ('pth' for PyTorch models, 'pickle' for traditional ML models).
|
| 230 |
+
"""
|
| 231 |
+
# Construct the save path dynamically relative to the project root
|
| 232 |
+
if save_format == 'pth':
|
| 233 |
+
model_path = os.path.join(MODEL_SAVE_DIR, f"{model_name}_model.pth")
|
| 234 |
+
torch.save(model.state_dict(), model_path)
|
| 235 |
+
elif save_format == 'pickle':
|
| 236 |
+
model_path = os.path.join(MODEL_SAVE_DIR, f"{model_name}.pkl")
|
| 237 |
+
joblib.dump(model, model_path)
|
| 238 |
+
else:
|
| 239 |
+
raise ValueError(f"Unsupported save format: {save_format}")
|
| 240 |
+
|
| 241 |
+
print(f"Model saved to {model_path}")
|
| 242 |
+
|
| 243 |
+
def load_model_state(model, model_name, model_class, num_labels, metadata_dim=0):
|
| 244 |
+
"""
|
| 245 |
+
Loads the state dictionary into a PyTorch model.
|
| 246 |
+
|
| 247 |
+
Args:
|
| 248 |
+
model (torch.nn.Module): An initialized model instance (architecture).
|
| 249 |
+
model_name (str): The name of the model to load.
|
| 250 |
+
model_class (class): The class of the model (e.g., RobertaMultiOutputModel).
|
| 251 |
+
num_labels (list): List of number of classes for each label.
|
| 252 |
+
metadata_dim (int): Dimensionality of metadata features, if applicable (default 0 for text-only).
|
| 253 |
+
|
| 254 |
+
Returns:
|
| 255 |
+
torch.nn.Module: The model with loaded state_dict, moved to the correct device, and set to eval mode.
|
| 256 |
+
"""
|
| 257 |
+
model_path = os.path.join(MODEL_SAVE_DIR, f"{model_name}_model.pth")
|
| 258 |
+
if not os.path.exists(model_path):
|
| 259 |
+
print(f"Warning: Model file not found at {model_path}. Returning a newly initialized model instance.")
|
| 260 |
+
# Re-initialize the model if not found, to ensure it has the correct architecture
|
| 261 |
+
if metadata_dim > 0:
|
| 262 |
+
return model_class(num_labels, metadata_dim=metadata_dim).to(DEVICE)
|
| 263 |
+
else:
|
| 264 |
+
return model_class(num_labels).to(DEVICE)
|
| 265 |
+
|
| 266 |
+
model.load_state_dict(torch.load(model_path, map_location=DEVICE))
|
| 267 |
+
model.to(DEVICE)
|
| 268 |
+
model.eval() # Set to evaluation mode after loading
|
| 269 |
+
print(f"Model loaded from {model_path}")
|
| 270 |
+
return model
|
| 271 |
+
|
| 272 |
+
def predict_probabilities(model, loader):
|
| 273 |
+
"""
|
| 274 |
+
Generates prediction probabilities for each label for a given model.
|
| 275 |
+
This is used for confidence scoring and feeding into a voting ensemble.
|
| 276 |
+
|
| 277 |
+
Args:
|
| 278 |
+
model (torch.nn.Module): The trained PyTorch model.
|
| 279 |
+
loader (torch.utils.data.DataLoader): DataLoader for the data to predict on.
|
| 280 |
+
|
| 281 |
+
Returns:
|
| 282 |
+
list: A list of lists of numpy arrays. Each inner list corresponds to a label column,
|
| 283 |
+
containing the softmax probabilities for each sample for that label.
|
| 284 |
+
"""
|
| 285 |
+
model.eval() # Set to evaluation mode
|
| 286 |
+
# List to store probabilities for each output head
|
| 287 |
+
all_probabilities = [[] for _ in range(len(LABEL_COLUMNS))]
|
| 288 |
+
|
| 289 |
+
with torch.no_grad():
|
| 290 |
+
for batch in tqdm(loader, desc="Predicting Probabilities"):
|
| 291 |
+
# Unpack batch, ignoring labels as we only need inputs
|
| 292 |
+
if len(batch) == 2:
|
| 293 |
+
inputs, _ = batch
|
| 294 |
+
input_ids = inputs['input_ids'].to(DEVICE)
|
| 295 |
+
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 296 |
+
outputs = model(input_ids, attention_mask)
|
| 297 |
+
elif len(batch) == 3:
|
| 298 |
+
inputs, metadata, _ = batch
|
| 299 |
+
input_ids = inputs['input_ids'].to(DEVICE)
|
| 300 |
+
attention_mask = inputs['attention_mask'].to(DEVICE)
|
| 301 |
+
metadata = metadata.to(DEVICE)
|
| 302 |
+
outputs = model(input_ids, attention_mask, metadata)
|
| 303 |
+
else:
|
| 304 |
+
raise ValueError("Unsupported batch format.")
|
| 305 |
+
|
| 306 |
+
for i, out_logits in enumerate(outputs):
|
| 307 |
+
# Apply softmax to logits to get probabilities
|
| 308 |
+
probs = torch.softmax(out_logits, dim=1).cpu().numpy()
|
| 309 |
+
all_probabilities[i].extend(probs)
|
| 310 |
+
return all_probabilities
|