Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,7 +13,6 @@ import numpy
|
|
| 13 |
import pandas as pd
|
| 14 |
import requests
|
| 15 |
from fhe_anonymizer import FHEAnonymizer
|
| 16 |
-
#from openai import OpenAI
|
| 17 |
from utils_demo import *
|
| 18 |
|
| 19 |
from concrete.ml.deployment import FHEModelClient
|
|
@@ -22,12 +21,10 @@ from models.speech_to_text.transcriber.audio import preprocess_audio
|
|
| 22 |
from models.speech_to_text.transcriber.model import load_model_and_processor
|
| 23 |
from models.speech_to_text.transcriber.audio import transcribe_audio
|
| 24 |
|
| 25 |
-
|
| 26 |
# Ensure the directory is clean before starting processes or reading files
|
| 27 |
clean_directory()
|
| 28 |
|
| 29 |
anonymizer = FHEAnonymizer()
|
| 30 |
-
#client = OpenAI(api_key=os.environ.get("openaikey"))
|
| 31 |
|
| 32 |
# Start the Uvicorn server hosting the FastAPI app
|
| 33 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
|
@@ -35,43 +32,16 @@ time.sleep(3)
|
|
| 35 |
|
| 36 |
# Load data from files required for the application
|
| 37 |
UUID_MAP = read_json(MAPPING_UUID_PATH)
|
| 38 |
-
ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH)
|
| 39 |
-
MAPPING_ANONYMIZED_SENTENCES = read_pickle(MAPPING_ANONYMIZED_SENTENCES_PATH)
|
| 40 |
-
MAPPING_ENCRYPTED_SENTENCES = read_pickle(MAPPING_ENCRYPTED_SENTENCES_PATH)
|
| 41 |
-
ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n")
|
| 42 |
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)
|
| 43 |
|
| 44 |
-
print(f"{ORIGINAL_DOCUMENT=}\n")
|
| 45 |
-
print(f"{MAPPING_DOC_EMBEDDING.keys()=}")
|
| 46 |
-
|
| 47 |
-
# 4. Data Processing and Operations (No specific operations shown here, assuming it's part of anonymizer or client usage)
|
| 48 |
-
|
| 49 |
-
# 5. Utilizing External Services or APIs
|
| 50 |
-
# (Assuming client initialization and anonymizer setup are parts of using external services or application-specific logic)
|
| 51 |
-
|
| 52 |
# Generate a random user ID for this session
|
| 53 |
USER_ID = numpy.random.randint(0, 2**32)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
def select_static_anonymized_sentences_fn(selected_sentences: List):
|
| 57 |
-
|
| 58 |
-
selected_sentences = [MAPPING_ANONYMIZED_SENTENCES[sentence] for sentence in selected_sentences]
|
| 59 |
-
|
| 60 |
-
anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0])
|
| 61 |
-
|
| 62 |
-
anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence]
|
| 63 |
-
|
| 64 |
-
return "\n\n".join(anonymized_selected_sentence)
|
| 65 |
-
|
| 66 |
-
|
| 67 |
def key_gen_fn() -> Dict:
|
| 68 |
"""Generate keys for a given user."""
|
| 69 |
-
|
| 70 |
print("------------ Step 1: Key Generation:")
|
| 71 |
-
|
| 72 |
print(f"Your user ID is: {USER_ID}....")
|
| 73 |
|
| 74 |
-
|
| 75 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 76 |
client.load()
|
| 77 |
|
|
@@ -84,70 +54,17 @@ def key_gen_fn() -> Dict:
|
|
| 84 |
|
| 85 |
# Save the evaluation key
|
| 86 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
| 87 |
-
|
| 88 |
write_bytes(evaluation_key_path, serialized_evaluation_keys)
|
| 89 |
|
| 90 |
-
# anonymizer.generate_key()
|
| 91 |
-
|
| 92 |
if not evaluation_key_path.is_file():
|
| 93 |
-
error_message = (
|
| 94 |
-
f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
|
| 95 |
-
)
|
| 96 |
print(error_message)
|
| 97 |
return {gen_key_btn: gr.update(value=error_message)}
|
| 98 |
else:
|
| 99 |
print("Keys have been generated ✅")
|
| 100 |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
|
| 101 |
|
| 102 |
-
|
| 103 |
-
def encrypt_doc_fn(doc):
|
| 104 |
-
|
| 105 |
-
print(f"\n------------ Step 2.1: Doc encryption: {doc=}")
|
| 106 |
-
|
| 107 |
-
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
| 108 |
-
return {encrypted_doc_box: gr.update(value="Error ❌: Please generate the key first!", lines=10)}
|
| 109 |
-
|
| 110 |
-
# Retrieve the client API
|
| 111 |
-
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 112 |
-
client.load()
|
| 113 |
-
|
| 114 |
-
encrypted_tokens = []
|
| 115 |
-
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+|\$\d+(?:\.\d+)?|\€\d+(?:\.\d+)?)", ' '.join(doc))
|
| 116 |
-
|
| 117 |
-
for token in tokens:
|
| 118 |
-
if token.strip() and re.match(r"\w+", token):
|
| 119 |
-
emb_x = MAPPING_DOC_EMBEDDING[token]
|
| 120 |
-
assert emb_x.shape == (1, 1024)
|
| 121 |
-
encrypted_x = client.quantize_encrypt_serialize(emb_x)
|
| 122 |
-
assert isinstance(encrypted_x, bytes)
|
| 123 |
-
encrypted_tokens.append(encrypted_x)
|
| 124 |
-
|
| 125 |
-
print("Doc encrypted ✅ on Client Side")
|
| 126 |
-
|
| 127 |
-
# No need to save it
|
| 128 |
-
# write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_doc", b"".join(encrypted_tokens))
|
| 129 |
-
|
| 130 |
-
encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens]
|
| 131 |
-
|
| 132 |
-
return {
|
| 133 |
-
encrypted_doc_box: gr.update(value=" ".join(encrypted_quant_tokens_hex), lines=10),
|
| 134 |
-
anonymized_doc_output: gr.update(visible=True, value=None),
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
-
import presidio_analyzer
|
| 138 |
-
import presidio_anonymizer
|
| 139 |
-
from presidio_analyzer import AnalyzerEngine
|
| 140 |
-
from presidio_anonymizer import AnonymizerEngine
|
| 141 |
-
|
| 142 |
-
def anonymization_with_presidio(prompt):
|
| 143 |
-
analyzer = AnalyzerEngine()
|
| 144 |
-
anonymizer = AnonymizerEngine()
|
| 145 |
-
results = analyzer.analyze(text=prompt,language='en')
|
| 146 |
-
result = anonymizer.anonymize(text=prompt, analyzer_results=results)
|
| 147 |
-
return result.text
|
| 148 |
-
|
| 149 |
def encrypt_query_fn(query):
|
| 150 |
-
|
| 151 |
print(f"\n------------ Step 2: Query encryption: {query=}")
|
| 152 |
|
| 153 |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
|
@@ -156,45 +73,29 @@ def encrypt_query_fn(query):
|
|
| 156 |
if is_user_query_valid(query):
|
| 157 |
return {
|
| 158 |
query_box: gr.update(
|
| 159 |
-
value=
|
| 160 |
-
"Unable to process ❌: The request exceeds the length limit or falls "
|
| 161 |
-
"outside the scope of this document. Please refine your query."
|
| 162 |
-
)
|
| 163 |
)
|
| 164 |
}
|
| 165 |
|
| 166 |
-
# Retrieve the client API
|
| 167 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 168 |
client.load()
|
| 169 |
|
| 170 |
encrypted_tokens = []
|
| 171 |
-
|
| 172 |
-
# Pattern to identify words and non-words (including punctuation, spaces, etc.)
|
| 173 |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
|
| 174 |
|
| 175 |
for token in tokens:
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
# 2- Directly append non-word tokens or whitespace to processed_tokens
|
| 182 |
-
|
| 183 |
-
# Prediction for each word
|
| 184 |
-
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
|
| 185 |
-
encrypted_x = client.quantize_encrypt_serialize(emb_x)
|
| 186 |
-
assert isinstance(encrypted_x, bytes)
|
| 187 |
-
|
| 188 |
-
encrypted_tokens.append(encrypted_x)
|
| 189 |
|
| 190 |
print("Data encrypted ✅ on Client Side")
|
| 191 |
|
| 192 |
assert len({len(token) for token in encrypted_tokens}) == 1
|
| 193 |
|
| 194 |
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
|
| 195 |
-
write_bytes(
|
| 196 |
-
KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big")
|
| 197 |
-
)
|
| 198 |
|
| 199 |
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]
|
| 200 |
|
|
@@ -204,169 +105,76 @@ def encrypt_query_fn(query):
|
|
| 204 |
identified_words_output_df: gr.update(visible=False, value=None),
|
| 205 |
}
|
| 206 |
|
| 207 |
-
|
| 208 |
def send_input_fn(query) -> Dict:
|
| 209 |
-
"""Send the encrypted data and the evaluation key to the server."""
|
| 210 |
-
|
| 211 |
print("------------ Step 3.1: Send encrypted_data to the Server")
|
| 212 |
|
| 213 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
| 214 |
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
| 215 |
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
|
| 216 |
|
| 217 |
-
if not evaluation_key_path.is_file():
|
| 218 |
-
error_message =
|
| 219 |
-
"Error Encountered While Sending Data to the Server: "
|
| 220 |
-
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
|
| 221 |
-
)
|
| 222 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
| 223 |
-
|
| 224 |
-
if not encrypted_input_path.is_file():
|
| 225 |
-
error_message = (
|
| 226 |
-
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
|
| 227 |
-
f"correctly on the client side - {encrypted_input_path.is_file()=}"
|
| 228 |
-
)
|
| 229 |
return {anonymized_query_output: gr.update(value=error_message)}
|
| 230 |
|
| 231 |
-
# Define the data and files to post
|
| 232 |
data = {"user_id": USER_ID, "input": query}
|
| 233 |
-
|
| 234 |
files = [
|
| 235 |
("files", open(evaluation_key_path, "rb")),
|
| 236 |
("files", open(encrypted_input_path, "rb")),
|
| 237 |
("files", open(encrypted_input_len_path, "rb")),
|
| 238 |
]
|
| 239 |
|
| 240 |
-
# Send the encrypted input and evaluation key to the server
|
| 241 |
url = SERVER_URL + "send_input"
|
| 242 |
-
|
| 243 |
-
with requests.post(
|
| 244 |
-
url=url,
|
| 245 |
-
data=data,
|
| 246 |
-
files=files,
|
| 247 |
-
) as resp:
|
| 248 |
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
|
| 249 |
|
| 250 |
-
|
| 251 |
def run_fhe_in_server_fn() -> Dict:
|
| 252 |
-
"""Run in FHE the anonymization of the query"""
|
| 253 |
-
|
| 254 |
print("------------ Step 3.2: Run in FHE on the Server Side")
|
| 255 |
|
| 256 |
-
|
| 257 |
-
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
| 258 |
-
|
| 259 |
-
if not evaluation_key_path.is_file():
|
| 260 |
-
error_message = (
|
| 261 |
-
"Error Encountered While Sending Data to the Server: "
|
| 262 |
-
f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
|
| 263 |
-
)
|
| 264 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
| 265 |
-
|
| 266 |
-
if not encrypted_input_path.is_file():
|
| 267 |
-
error_message = (
|
| 268 |
-
"Error Encountered While Sending Data to the Server: The data has not been encrypted "
|
| 269 |
-
f"correctly on the client side - {encrypted_input_path.is_file()=}"
|
| 270 |
-
)
|
| 271 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
| 272 |
-
|
| 273 |
-
data = {
|
| 274 |
-
"user_id": USER_ID,
|
| 275 |
-
}
|
| 276 |
-
|
| 277 |
url = SERVER_URL + "run_fhe"
|
| 278 |
|
| 279 |
-
with requests.post(
|
| 280 |
-
url=url,
|
| 281 |
-
data=data,
|
| 282 |
-
) as response:
|
| 283 |
if not response.ok:
|
| 284 |
return {
|
| 285 |
anonymized_query_output: gr.update(
|
| 286 |
-
value=
|
| 287 |
-
"⚠️ An error occurred on the Server Side. "
|
| 288 |
-
"Please check connectivity and data transmission."
|
| 289 |
-
),
|
| 290 |
),
|
| 291 |
}
|
| 292 |
else:
|
| 293 |
time.sleep(1)
|
| 294 |
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
|
| 295 |
|
| 296 |
-
|
| 297 |
def get_output_fn() -> Dict:
|
| 298 |
-
|
| 299 |
print("------------ Step 3.3: Get the output from the Server Side")
|
| 300 |
|
| 301 |
-
|
| 302 |
-
error_message = (
|
| 303 |
-
"Error Encountered While Sending Data to the Server: "
|
| 304 |
-
"The key has not been generated correctly"
|
| 305 |
-
)
|
| 306 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
| 307 |
-
|
| 308 |
-
if not (KEYS_DIR / f"{USER_ID}/encrypted_input").is_file():
|
| 309 |
-
error_message = (
|
| 310 |
-
"Error Encountered While Sending Data to the Server: "
|
| 311 |
-
"The data has not been encrypted correctly on the client side"
|
| 312 |
-
)
|
| 313 |
-
return {anonymized_query_output: gr.update(value=error_message)}
|
| 314 |
-
|
| 315 |
-
data = {
|
| 316 |
-
"user_id": USER_ID,
|
| 317 |
-
}
|
| 318 |
-
|
| 319 |
-
# Retrieve the encrypted output
|
| 320 |
url = SERVER_URL + "get_output"
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
data=data,
|
| 324 |
-
) as response:
|
| 325 |
if response.ok:
|
| 326 |
print("Data received ✅ from the remote Server")
|
| 327 |
response_data = response.json()
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
# Decode the base64 encoded data
|
| 332 |
-
encrypted_output = base64.b64decode(encrypted_output_base64)
|
| 333 |
-
length_encrypted_output = base64.b64decode(length_encrypted_output_base64)
|
| 334 |
-
|
| 335 |
-
# Save the encrypted output to bytes in a file as it is too large to pass through
|
| 336 |
-
# regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
|
| 337 |
|
| 338 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
|
| 339 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
|
| 340 |
-
|
| 341 |
else:
|
| 342 |
-
print("Error ❌ in getting data
|
| 343 |
-
|
| 344 |
|
| 345 |
def decrypt_fn(text) -> Dict:
|
| 346 |
-
"
|
| 347 |
|
| 348 |
-
print("------------ Step 4: Dencrypt the data on the `Client Side`")
|
| 349 |
-
|
| 350 |
-
# Get the encrypted output path
|
| 351 |
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
|
| 352 |
|
| 353 |
if not encrypted_output_path.is_file():
|
| 354 |
-
error_message = "
|
| 355 |
-
- the connectivity \n
|
| 356 |
-
- the query has been submitted \n
|
| 357 |
-
- the evaluation key has been generated \n
|
| 358 |
-
- the server processed the encrypted data \n
|
| 359 |
-
- the Client received the data from the Server before decrypting the prediction
|
| 360 |
-
"""
|
| 361 |
print(error_message)
|
| 362 |
-
|
| 363 |
return error_message, None
|
| 364 |
|
| 365 |
-
# Retrieve the client API
|
| 366 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 367 |
client.load()
|
| 368 |
|
| 369 |
-
# Load the encrypted output as bytes
|
| 370 |
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
|
| 371 |
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
|
| 372 |
|
|
@@ -376,11 +184,7 @@ def decrypt_fn(text) -> Dict:
|
|
| 376 |
|
| 377 |
i = 0
|
| 378 |
for token in tokens:
|
| 379 |
-
|
| 380 |
-
# Directly append non-word tokens or whitespace to processed_tokens
|
| 381 |
-
if bool(re.match(r"^\s+$", token)):
|
| 382 |
-
continue
|
| 383 |
-
else:
|
| 384 |
encrypted_token = encrypted_output[i : i + length]
|
| 385 |
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
|
| 386 |
probability = prediction_proba[0][1]
|
|
@@ -388,380 +192,102 @@ def decrypt_fn(text) -> Dict:
|
|
| 388 |
|
| 389 |
if probability >= 0.77:
|
| 390 |
identified_words_with_prob.append((token, probability))
|
| 391 |
-
|
| 392 |
-
# Use the existing UUID if available, otherwise generate a new one
|
| 393 |
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
|
| 394 |
decrypted_output.append(tmp_uuid)
|
| 395 |
UUID_MAP[token] = tmp_uuid
|
| 396 |
else:
|
| 397 |
decrypted_output.append(token)
|
| 398 |
|
| 399 |
-
|
| 400 |
-
write_json(MAPPING_UUID_PATH, UUID_MAP)
|
| 401 |
|
| 402 |
-
# Removing Spaces Before Punctuation:
|
| 403 |
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
|
| 404 |
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
identified_words_with_prob, columns=["Identified Words", "Probability"]
|
| 409 |
-
)
|
| 410 |
-
else:
|
| 411 |
-
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"])
|
| 412 |
|
| 413 |
print("Decryption done ✅ on Client Side")
|
| 414 |
|
| 415 |
return anonymized_text, identified_df
|
| 416 |
|
| 417 |
-
|
| 418 |
-
def anonymization_with_fn(selected_sentences, query):
|
| 419 |
-
|
| 420 |
encrypt_query_fn(query)
|
| 421 |
-
|
| 422 |
send_input_fn(query)
|
| 423 |
-
|
| 424 |
run_fhe_in_server_fn()
|
| 425 |
-
|
| 426 |
get_output_fn()
|
| 427 |
-
|
| 428 |
anonymized_text, identified_df = decrypt_fn(query)
|
| 429 |
|
| 430 |
return {
|
| 431 |
-
anonymized_doc_output: gr.update(value=select_static_anonymized_sentences_fn(selected_sentences)),
|
| 432 |
anonymized_query_output: gr.update(value=anonymized_text),
|
| 433 |
-
identified_words_output_df: gr.update(value=identified_df, visible=
|
| 434 |
}
|
| 435 |
|
| 436 |
-
# Define the folder path containing audio files
|
| 437 |
-
AUDIO_FOLDER_PATH = "./files/"
|
| 438 |
-
|
| 439 |
-
# Function to list available audio files in the folder
|
| 440 |
-
def get_audio_files():
|
| 441 |
-
files = [f for f in os.listdir(AUDIO_FOLDER_PATH) if f.endswith(('.wav', '.mp3'))]
|
| 442 |
-
return files
|
| 443 |
-
|
| 444 |
-
# Step 1: Load and display audio file
|
| 445 |
-
def load_audio_file(selected_audio):
|
| 446 |
-
file_path = os.path.join(AUDIO_FOLDER_PATH, selected_audio)
|
| 447 |
-
return file_path
|
| 448 |
-
|
| 449 |
-
# Step 1.1: Record and save the audio file
|
| 450 |
-
def save_recorded_audio(audio):
|
| 451 |
-
file_path = os.path.join(AUDIO_FOLDER_PATH, "recorded_audio.wav")
|
| 452 |
-
audio.export(file_path, format="wav") # Save the audio as a .wav file
|
| 453 |
-
return file_path
|
| 454 |
-
|
| 455 |
-
def click_js():
|
| 456 |
-
return """function audioRecord() {
|
| 457 |
-
var xPathRes = document.evaluate ('//*[@id="audio"]//button', document, null, XPathResult.FIRST_ORDERED_NODE_TYPE, null);
|
| 458 |
-
xPathRes.singleNodeValue.click();}"""
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
def action(btn):
|
| 462 |
-
"""Changes button text on click"""
|
| 463 |
-
if btn == 'Speak':
|
| 464 |
-
return 'Stop'
|
| 465 |
-
else:
|
| 466 |
-
return 'Speak'
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
def check_btn(btn):
|
| 470 |
-
"""Checks for correct button text before invoking transcribe()"""
|
| 471 |
-
if btn != 'Speak':
|
| 472 |
-
raise Exception('Recording...')
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
def transcribe():
|
| 476 |
-
return 'Success'
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
def transcribe_audio_app(audio_path):
|
| 480 |
-
# Prétraitement de l'audio
|
| 481 |
-
audio = preprocess_audio(audio_path)
|
| 482 |
-
|
| 483 |
-
# Chargement du modèle
|
| 484 |
-
model,processor = load_model_and_processor(model_name="openai/whisper-base")
|
| 485 |
-
|
| 486 |
-
# Transcription
|
| 487 |
-
transcription = transcribe_audio(model=model,processor=processor,audio=audio)
|
| 488 |
-
|
| 489 |
-
return transcription
|
| 490 |
-
|
| 491 |
-
|
| 492 |
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
|
| 493 |
|
| 494 |
with demo:
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
gr.Markdown(
|
| 499 |
-
"""
|
| 500 |
-
<p align="center">
|
| 501 |
-
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
| 502 |
-
</p>
|
| 503 |
-
""")
|
| 504 |
-
|
| 505 |
gr.Markdown(
|
| 506 |
"""
|
| 507 |
-
<h1 style="text-align: center;">Secure De-Identification of
|
| 508 |
-
<!--
|
| 509 |
-
<p align="center">
|
| 510 |
-
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a>
|
| 511 |
-
—
|
| 512 |
-
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a>
|
| 513 |
-
—
|
| 514 |
-
<a href=" https://community.zama.ai/c/concrete-ml/8"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a>
|
| 515 |
-
—
|
| 516 |
-
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a>
|
| 517 |
-
</p>
|
| 518 |
-
-->
|
| 519 |
"""
|
| 520 |
)
|
| 521 |
|
| 522 |
gr.Markdown(
|
| 523 |
"""
|
| 524 |
<p align="center" style="font-size: 18px;">
|
| 525 |
-
|
| 526 |
-
</p>
|
| 527 |
-
|
| 528 |
-
<p align="center" style="font-size: 18px;">
|
| 529 |
-
Traditional methods of de-identification often fall short of true anonymization, merely concealing identifiable information. With FHE, we go beyond obfuscation to provide <b>complete security,</b> allowing computations to be performed directly on encrypted data without ever exposing sensitive details.
|
| 530 |
-
</p>
|
| 531 |
-
|
| 532 |
-
<p align="center" style="font-size: 18px;">
|
| 533 |
-
This technology is crucial in enabling organizations to use and share sensitive data responsibly, while fully respecting individual privacy.
|
| 534 |
</p>
|
| 535 |
"""
|
| 536 |
)
|
| 537 |
|
| 538 |
-
|
| 539 |
-
# Step 1: Add an audio file
|
| 540 |
-
gr.Markdown("## Step 1: Add an Audio File")
|
| 541 |
-
audio_files = get_audio_files()
|
| 542 |
-
|
| 543 |
-
with gr.Row():
|
| 544 |
-
audio_file_dropdown = gr.Dropdown(audio_files, label="Select an Audio File", interactive=True)
|
| 545 |
-
audio_output = gr.Audio(label="Selected Audio", type="filepath")
|
| 546 |
-
|
| 547 |
-
# When an audio file is selected, it will display the file path
|
| 548 |
-
audio_file_dropdown.change(fn=load_audio_file, inputs=[audio_file_dropdown], outputs=[audio_output])
|
| 549 |
-
|
| 550 |
-
with gr.Row():
|
| 551 |
-
transcribe_btn = gr.Button("Transcrire l'audio")
|
| 552 |
-
transcription_output = gr.Textbox(label="Transcription", lines=5)
|
| 553 |
-
|
| 554 |
-
transcribe_btn.click(
|
| 555 |
-
fn=transcribe_audio_app,
|
| 556 |
-
inputs=[audio_output],
|
| 557 |
-
outputs=[transcription_output]
|
| 558 |
-
)
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
########################## Step 1.1: Record Audio ##########################
|
| 564 |
-
|
| 565 |
-
gr.Markdown("## Step 1.1: Record an Audio File")
|
| 566 |
-
"""
|
| 567 |
-
with gr.Row():
|
| 568 |
-
audio_recorder = gr.Audio(source="microphone", type="file", label="Record Audio")
|
| 569 |
-
record_output = gr.Audio(label="Recorded Audio", type="filepath")
|
| 570 |
-
# When the user records an audio, save it
|
| 571 |
-
audio_recorder.change(fn=save_recorded_audio, inputs=[audio_recorder], outputs=[record_output])
|
| 572 |
-
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
|
| 573 |
-
gen_key_btn.click(
|
| 574 |
-
key_gen_fn,
|
| 575 |
-
inputs=[],
|
| 576 |
-
outputs=[gen_key_btn],
|
| 577 |
-
) """
|
| 578 |
-
|
| 579 |
-
msg = gr.Textbox()
|
| 580 |
-
|
| 581 |
-
audio_box = gr.Audio(label="Audio", type="filepath", elem_id='audio')
|
| 582 |
-
|
| 583 |
-
with gr.Row():
|
| 584 |
-
audio_btn = gr.Button('Speak')
|
| 585 |
-
clear = gr.Button("Clear")
|
| 586 |
-
|
| 587 |
-
audio_btn.click(fn=action, inputs=audio_btn, outputs=audio_btn) \
|
| 588 |
-
.then(fn=check_btn, inputs=audio_btn) \
|
| 589 |
-
.success(fn=transcribe_audio_app, outputs=msg)
|
| 590 |
-
|
| 591 |
-
clear.click(lambda: None, None, msg, queue=False)
|
| 592 |
-
|
| 593 |
-
########################## Transcription ##########################
|
| 594 |
-
with gr.Row():
|
| 595 |
-
transcribe_btn = gr.Button("Transcrire l'audio")
|
| 596 |
-
transcription_output = gr.Textbox(label="Transcription", lines=5)
|
| 597 |
-
|
| 598 |
-
transcribe_btn.click(
|
| 599 |
-
fn=transcribe_audio_app,
|
| 600 |
-
inputs=[audio_output],
|
| 601 |
-
outputs=[transcription_output]
|
| 602 |
-
)
|
| 603 |
-
|
| 604 |
########################## Key Gen Part ##########################
|
| 605 |
-
|
| 606 |
gr.Markdown(
|
| 607 |
-
"## Step 1
|
| 608 |
-
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created
|
| 609 |
-
|
| 610 |
-
called evaluation keys, enables a server to work on the encrypted data without seeing the
|
| 611 |
-
actual data.
|
| 612 |
-
"""
|
| 613 |
)
|
| 614 |
|
| 615 |
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
|
|
|
|
| 616 |
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
|
|
|
|
|
|
|
|
|
| 621 |
)
|
| 622 |
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
"""To make it simple, we pre-compiled the following document, but you are free to choose
|
| 628 |
-
on which part you want to run this example.
|
| 629 |
-
"""
|
| 630 |
)
|
| 631 |
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
label="Contract:",
|
| 638 |
-
show_label=True,
|
| 639 |
-
)
|
| 640 |
-
|
| 641 |
-
with gr.Column(scale=1, min_width=6):
|
| 642 |
-
gr.HTML("<div style='height: 77px;'></div>")
|
| 643 |
-
encrypt_doc_btn = gr.Button("Encrypt the document")
|
| 644 |
-
|
| 645 |
-
with gr.Column(scale=5):
|
| 646 |
-
encrypted_doc_box = gr.Textbox(
|
| 647 |
-
label="Encrypted document:", show_label=True, interactive=False, lines=10
|
| 648 |
-
)
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
########################## User Query Part ##########################
|
| 652 |
-
|
| 653 |
-
gr.Markdown("<hr />")
|
| 654 |
-
gr.Markdown("## Step 2.2: Select the prompt you want to encrypt\n\n"
|
| 655 |
-
"""Please choose from the predefined options in
|
| 656 |
-
<span style='color:grey'>“Prompt examples”</span> or craft a custom question in
|
| 657 |
-
the <span style='color:grey'>“Customized prompt”</span> text box.
|
| 658 |
-
Remain concise and relevant to the context. Any off-topic query will not be processed.""")
|
| 659 |
-
|
| 660 |
-
with gr.Row():
|
| 661 |
-
with gr.Column(scale=5):
|
| 662 |
-
|
| 663 |
-
with gr.Column(scale=5):
|
| 664 |
-
default_query_box = gr.Dropdown(
|
| 665 |
-
list(DEFAULT_QUERIES.values()), label="PROMPT EXAMPLES:"
|
| 666 |
-
)
|
| 667 |
-
|
| 668 |
-
gr.Markdown("Or")
|
| 669 |
-
|
| 670 |
-
query_box = gr.Textbox(
|
| 671 |
-
value=" Hello. My name is Inuitvementoya. You kill my father. Prepare to die.", label="CUSTOMIZED PROMPT:", interactive=True
|
| 672 |
-
)
|
| 673 |
-
|
| 674 |
-
default_query_box.change(
|
| 675 |
-
fn=lambda default_query_box: default_query_box,
|
| 676 |
-
inputs=[default_query_box],
|
| 677 |
-
outputs=[query_box],
|
| 678 |
-
)
|
| 679 |
-
|
| 680 |
-
with gr.Column(scale=1, min_width=6):
|
| 681 |
-
gr.HTML("<div style='height: 77px;'></div>")
|
| 682 |
-
encrypt_query_btn = gr.Button("Encrypt the prompt")
|
| 683 |
-
# gr.HTML("<div style='height: 50px;'></div>")
|
| 684 |
-
|
| 685 |
-
with gr.Column(scale=5):
|
| 686 |
-
output_encrypted_box = gr.Textbox(
|
| 687 |
-
label="Encrypted de-identified query that will be sent to the de-identification server:",
|
| 688 |
-
lines=8,
|
| 689 |
-
)
|
| 690 |
|
| 691 |
########################## FHE processing Part ##########################
|
| 692 |
-
|
| 693 |
-
gr.Markdown("<hr />")
|
| 694 |
-
gr.Markdown("## Step 3: De-identify the document and the prompt using FHE")
|
| 695 |
gr.Markdown(
|
| 696 |
-
"""
|
| 697 |
-
server
|
| 698 |
-
server will return the result to the client for decryption."""
|
| 699 |
-
|
| 700 |
)
|
| 701 |
|
| 702 |
run_fhe_btn = gr.Button("De-identify using FHE")
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
with gr.Column(scale=5):
|
| 706 |
-
|
| 707 |
-
anonymized_doc_output = gr.Textbox(
|
| 708 |
-
label="Decrypted and de-idenntified document", lines=10, interactive=True
|
| 709 |
-
)
|
| 710 |
-
|
| 711 |
-
with gr.Column(scale=5):
|
| 712 |
-
|
| 713 |
-
anonymized_query_output = gr.Textbox(
|
| 714 |
-
label="Decrypted and de-identified prompt", lines=10, interactive=True
|
| 715 |
-
)
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
|
| 719 |
-
|
| 720 |
-
encrypt_doc_btn.click(
|
| 721 |
-
fn=encrypt_doc_fn,
|
| 722 |
-
inputs=[original_sentences_box],
|
| 723 |
-
outputs=[encrypted_doc_box, anonymized_doc_output],
|
| 724 |
-
)
|
| 725 |
-
|
| 726 |
-
encrypt_query_btn.click(
|
| 727 |
-
fn=encrypt_query_fn,
|
| 728 |
-
inputs=[query_box],
|
| 729 |
-
outputs=[
|
| 730 |
-
query_box,
|
| 731 |
-
output_encrypted_box,
|
| 732 |
-
anonymized_query_output,
|
| 733 |
-
identified_words_output_df,
|
| 734 |
-
],
|
| 735 |
)
|
|
|
|
| 736 |
|
| 737 |
run_fhe_btn.click(
|
| 738 |
anonymization_with_fn,
|
| 739 |
-
inputs=[original_sentences_box, query_box],
|
| 740 |
-
outputs=[anonymized_doc_output, anonymized_query_output, identified_words_output_df],
|
| 741 |
-
)
|
| 742 |
-
|
| 743 |
-
|
| 744 |
-
########################## Presidio ##########################
|
| 745 |
-
gr.Markdown("<hr />")
|
| 746 |
-
gr.Markdown("## Step 3: De-identify the document and the prompt")
|
| 747 |
-
gr.Markdown(
|
| 748 |
-
"""This step will demonstrate de-identification using both FHE and Presidio methods.
|
| 749 |
-
The same prompt will be used for both to allow for direct comparison.""")
|
| 750 |
-
|
| 751 |
-
with gr.Row():
|
| 752 |
-
run_presidio_btn = gr.Button("De-identify using Presidio")
|
| 753 |
-
|
| 754 |
-
with gr.Row():
|
| 755 |
-
presidio_output = gr.Textbox(
|
| 756 |
-
label="Presidio: De-identified prompt", lines=10, interactive=True
|
| 757 |
-
)
|
| 758 |
-
|
| 759 |
-
run_presidio_btn.click(
|
| 760 |
-
anonymization_with_presidio,
|
| 761 |
inputs=[query_box],
|
| 762 |
-
outputs=[
|
| 763 |
)
|
| 764 |
|
| 765 |
-
|
| 766 |
# Launch the app
|
| 767 |
demo.launch(share=False)
|
|
|
|
| 13 |
import pandas as pd
|
| 14 |
import requests
|
| 15 |
from fhe_anonymizer import FHEAnonymizer
|
|
|
|
| 16 |
from utils_demo import *
|
| 17 |
|
| 18 |
from concrete.ml.deployment import FHEModelClient
|
|
|
|
| 21 |
from models.speech_to_text.transcriber.model import load_model_and_processor
|
| 22 |
from models.speech_to_text.transcriber.audio import transcribe_audio
|
| 23 |
|
|
|
|
| 24 |
# Ensure the directory is clean before starting processes or reading files
|
| 25 |
clean_directory()
|
| 26 |
|
| 27 |
anonymizer = FHEAnonymizer()
|
|
|
|
| 28 |
|
| 29 |
# Start the Uvicorn server hosting the FastAPI app
|
| 30 |
subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
|
|
|
|
| 32 |
|
| 33 |
# Load data from files required for the application
|
| 34 |
UUID_MAP = read_json(MAPPING_UUID_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
MAPPING_DOC_EMBEDDING = read_pickle(MAPPING_DOC_EMBEDDING_PATH)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# Generate a random user ID for this session
|
| 38 |
USER_ID = numpy.random.randint(0, 2**32)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def key_gen_fn() -> Dict:
|
| 41 |
"""Generate keys for a given user."""
|
|
|
|
| 42 |
print("------------ Step 1: Key Generation:")
|
|
|
|
| 43 |
print(f"Your user ID is: {USER_ID}....")
|
| 44 |
|
|
|
|
| 45 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 46 |
client.load()
|
| 47 |
|
|
|
|
| 54 |
|
| 55 |
# Save the evaluation key
|
| 56 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
|
|
|
| 57 |
write_bytes(evaluation_key_path, serialized_evaluation_keys)
|
| 58 |
|
|
|
|
|
|
|
| 59 |
if not evaluation_key_path.is_file():
|
| 60 |
+
error_message = f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}"
|
|
|
|
|
|
|
| 61 |
print(error_message)
|
| 62 |
return {gen_key_btn: gr.update(value=error_message)}
|
| 63 |
else:
|
| 64 |
print("Keys have been generated ✅")
|
| 65 |
return {gen_key_btn: gr.update(value="Keys have been generated ✅")}
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
def encrypt_query_fn(query):
|
|
|
|
| 68 |
print(f"\n------------ Step 2: Query encryption: {query=}")
|
| 69 |
|
| 70 |
if not (KEYS_DIR / f"{USER_ID}/evaluation_key").is_file():
|
|
|
|
| 73 |
if is_user_query_valid(query):
|
| 74 |
return {
|
| 75 |
query_box: gr.update(
|
| 76 |
+
value="Unable to process ❌: The request exceeds the length limit or falls outside the scope. Please refine your query."
|
|
|
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
}
|
| 79 |
|
|
|
|
| 80 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 81 |
client.load()
|
| 82 |
|
| 83 |
encrypted_tokens = []
|
|
|
|
|
|
|
| 84 |
tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query)
|
| 85 |
|
| 86 |
for token in tokens:
|
| 87 |
+
if not bool(re.match(r"^\s+$", token)):
|
| 88 |
+
emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER)
|
| 89 |
+
encrypted_x = client.quantize_encrypt_serialize(emb_x)
|
| 90 |
+
assert isinstance(encrypted_x, bytes)
|
| 91 |
+
encrypted_tokens.append(encrypted_x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
print("Data encrypted ✅ on Client Side")
|
| 94 |
|
| 95 |
assert len({len(token) for token in encrypted_tokens}) == 1
|
| 96 |
|
| 97 |
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input", b"".join(encrypted_tokens))
|
| 98 |
+
write_bytes(KEYS_DIR / f"{USER_ID}/encrypted_input_len", len(encrypted_tokens[0]).to_bytes(10, "big"))
|
|
|
|
|
|
|
| 99 |
|
| 100 |
encrypted_quant_tokens_hex = [token.hex()[500:580] for token in encrypted_tokens]
|
| 101 |
|
|
|
|
| 105 |
identified_words_output_df: gr.update(visible=False, value=None),
|
| 106 |
}
|
| 107 |
|
|
|
|
| 108 |
def send_input_fn(query) -> Dict:
|
|
|
|
|
|
|
| 109 |
print("------------ Step 3.1: Send encrypted_data to the Server")
|
| 110 |
|
| 111 |
evaluation_key_path = KEYS_DIR / f"{USER_ID}/evaluation_key"
|
| 112 |
encrypted_input_path = KEYS_DIR / f"{USER_ID}/encrypted_input"
|
| 113 |
encrypted_input_len_path = KEYS_DIR / f"{USER_ID}/encrypted_input_len"
|
| 114 |
|
| 115 |
+
if not evaluation_key_path.is_file() or not encrypted_input_path.is_file():
|
| 116 |
+
error_message = "Error: Key or encrypted input not found. Please generate the key and encrypt the query first."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
return {anonymized_query_output: gr.update(value=error_message)}
|
| 118 |
|
|
|
|
| 119 |
data = {"user_id": USER_ID, "input": query}
|
|
|
|
| 120 |
files = [
|
| 121 |
("files", open(evaluation_key_path, "rb")),
|
| 122 |
("files", open(encrypted_input_path, "rb")),
|
| 123 |
("files", open(encrypted_input_len_path, "rb")),
|
| 124 |
]
|
| 125 |
|
|
|
|
| 126 |
url = SERVER_URL + "send_input"
|
| 127 |
+
with requests.post(url=url, data=data, files=files) as resp:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
print("Data sent to the server ✅" if resp.ok else "Error ❌ in sending data to the server")
|
| 129 |
|
|
|
|
| 130 |
def run_fhe_in_server_fn() -> Dict:
|
|
|
|
|
|
|
| 131 |
print("------------ Step 3.2: Run in FHE on the Server Side")
|
| 132 |
|
| 133 |
+
data = {"user_id": USER_ID}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
url = SERVER_URL + "run_fhe"
|
| 135 |
|
| 136 |
+
with requests.post(url=url, data=data) as response:
|
|
|
|
|
|
|
|
|
|
| 137 |
if not response.ok:
|
| 138 |
return {
|
| 139 |
anonymized_query_output: gr.update(
|
| 140 |
+
value="⚠️ An error occurred on the Server Side. Please check connectivity and data transmission."
|
|
|
|
|
|
|
|
|
|
| 141 |
),
|
| 142 |
}
|
| 143 |
else:
|
| 144 |
time.sleep(1)
|
| 145 |
print(f"The query anonymization was computed in {response.json():.2f} s per token.")
|
| 146 |
|
|
|
|
| 147 |
def get_output_fn() -> Dict:
|
|
|
|
| 148 |
print("------------ Step 3.3: Get the output from the Server Side")
|
| 149 |
|
| 150 |
+
data = {"user_id": USER_ID}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
url = SERVER_URL + "get_output"
|
| 152 |
+
|
| 153 |
+
with requests.post(url=url, data=data) as response:
|
|
|
|
|
|
|
| 154 |
if response.ok:
|
| 155 |
print("Data received ✅ from the remote Server")
|
| 156 |
response_data = response.json()
|
| 157 |
+
encrypted_output = base64.b64decode(response_data["encrypted_output"])
|
| 158 |
+
length_encrypted_output = base64.b64decode(response_data["length"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output", encrypted_output)
|
| 161 |
write_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len", length_encrypted_output)
|
|
|
|
| 162 |
else:
|
| 163 |
+
print("Error ❌ in getting data from the server")
|
|
|
|
| 164 |
|
| 165 |
def decrypt_fn(text) -> Dict:
|
| 166 |
+
print("------------ Step 4: Decrypt the data on the `Client Side`")
|
| 167 |
|
|
|
|
|
|
|
|
|
|
| 168 |
encrypted_output_path = CLIENT_DIR / f"{USER_ID}_encrypted_output"
|
| 169 |
|
| 170 |
if not encrypted_output_path.is_file():
|
| 171 |
+
error_message = "⚠️ Error: Encrypted output not found. Please ensure the entire process has been completed."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
print(error_message)
|
|
|
|
| 173 |
return error_message, None
|
| 174 |
|
|
|
|
| 175 |
client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{USER_ID}")
|
| 176 |
client.load()
|
| 177 |
|
|
|
|
| 178 |
encrypted_output = read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output")
|
| 179 |
length = int.from_bytes(read_bytes(CLIENT_DIR / f"{USER_ID}_encrypted_output_len"), "big")
|
| 180 |
|
|
|
|
| 184 |
|
| 185 |
i = 0
|
| 186 |
for token in tokens:
|
| 187 |
+
if not bool(re.match(r"^\s+$", token)):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
encrypted_token = encrypted_output[i : i + length]
|
| 189 |
prediction_proba = client.deserialize_decrypt_dequantize(encrypted_token)
|
| 190 |
probability = prediction_proba[0][1]
|
|
|
|
| 192 |
|
| 193 |
if probability >= 0.77:
|
| 194 |
identified_words_with_prob.append((token, probability))
|
|
|
|
|
|
|
| 195 |
tmp_uuid = UUID_MAP.get(token, str(uuid.uuid4())[:8])
|
| 196 |
decrypted_output.append(tmp_uuid)
|
| 197 |
UUID_MAP[token] = tmp_uuid
|
| 198 |
else:
|
| 199 |
decrypted_output.append(token)
|
| 200 |
|
| 201 |
+
write_json(MAPPING_UUID_PATH, UUID_MAP)
|
|
|
|
| 202 |
|
|
|
|
| 203 |
anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", " ".join(decrypted_output))
|
| 204 |
|
| 205 |
+
identified_df = pd.DataFrame(
|
| 206 |
+
identified_words_with_prob, columns=["Identified Words", "Probability"]
|
| 207 |
+
) if identified_words_with_prob else pd.DataFrame(columns=["Identified Words", "Probability"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
print("Decryption done ✅ on Client Side")
|
| 210 |
|
| 211 |
return anonymized_text, identified_df
|
| 212 |
|
| 213 |
+
def anonymization_with_fn(query):
|
|
|
|
|
|
|
| 214 |
encrypt_query_fn(query)
|
|
|
|
| 215 |
send_input_fn(query)
|
|
|
|
| 216 |
run_fhe_in_server_fn()
|
|
|
|
| 217 |
get_output_fn()
|
|
|
|
| 218 |
anonymized_text, identified_df = decrypt_fn(query)
|
| 219 |
|
| 220 |
return {
|
|
|
|
| 221 |
anonymized_query_output: gr.update(value=anonymized_text),
|
| 222 |
+
identified_words_output_df: gr.update(value=identified_df, visible=True),
|
| 223 |
}
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }")
|
| 226 |
|
| 227 |
with demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
gr.Markdown(
|
| 229 |
"""
|
| 230 |
+
<h1 style="text-align: center;">Secure De-Identification of Text Data using FHE</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 231 |
"""
|
| 232 |
)
|
| 233 |
|
| 234 |
gr.Markdown(
|
| 235 |
"""
|
| 236 |
<p align="center" style="font-size: 18px;">
|
| 237 |
+
This demo showcases privacy-preserving de-identification of text data using Fully Homomorphic Encryption (FHE).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
</p>
|
| 239 |
"""
|
| 240 |
)
|
| 241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
########################## Key Gen Part ##########################
|
|
|
|
| 243 |
gr.Markdown(
|
| 244 |
+
"## Step 1: Generate the keys\n\n"
|
| 245 |
+
"""In Fully Homomorphic Encryption (FHE) methods, two types of keys are created: secret keys for encrypting and decrypting user data,
|
| 246 |
+
and evaluation keys for the server to work on encrypted data without seeing the actual content."""
|
|
|
|
|
|
|
|
|
|
| 247 |
)
|
| 248 |
|
| 249 |
gen_key_btn = gr.Button("Generate the secret and evaluation keys")
|
| 250 |
+
gen_key_btn.click(key_gen_fn, inputs=[], outputs=[gen_key_btn])
|
| 251 |
|
| 252 |
+
########################## User Query Part ##########################
|
| 253 |
+
gr.Markdown("## Step 2: Enter the prompt you want to encrypt and de-identify")
|
| 254 |
+
|
| 255 |
+
query_box = gr.Textbox(
|
| 256 |
+
value="Hello. My name is John Doe. I live at 123 Main St, Anytown, USA.",
|
| 257 |
+
label="Enter your prompt:",
|
| 258 |
+
interactive=True
|
| 259 |
)
|
| 260 |
|
| 261 |
+
encrypt_query_btn = gr.Button("Encrypt the prompt")
|
| 262 |
+
output_encrypted_box = gr.Textbox(
|
| 263 |
+
label="Encrypted prompt (will be sent to the de-identification server):",
|
| 264 |
+
lines=4,
|
|
|
|
|
|
|
|
|
|
| 265 |
)
|
| 266 |
|
| 267 |
+
encrypt_query_btn.click(
|
| 268 |
+
fn=encrypt_query_fn,
|
| 269 |
+
inputs=[query_box],
|
| 270 |
+
outputs=[query_box, output_encrypted_box],
|
| 271 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
########################## FHE processing Part ##########################
|
| 274 |
+
gr.Markdown("## Step 3: De-identify the prompt using FHE")
|
|
|
|
|
|
|
| 275 |
gr.Markdown(
|
| 276 |
+
"""The encrypted prompt will be sent to a remote server for de-identification using FHE.
|
| 277 |
+
The server performs computations on the encrypted data and returns the result for decryption."""
|
|
|
|
|
|
|
| 278 |
)
|
| 279 |
|
| 280 |
run_fhe_btn = gr.Button("De-identify using FHE")
|
| 281 |
+
anonymized_query_output = gr.Textbox(
|
| 282 |
+
label="De-identified prompt", lines=4, interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
)
|
| 284 |
+
identified_words_output_df = gr.Dataframe(label="Identified words:", visible=False)
|
| 285 |
|
| 286 |
run_fhe_btn.click(
|
| 287 |
anonymization_with_fn,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
inputs=[query_box],
|
| 289 |
+
outputs=[anonymized_query_output, identified_words_output_df],
|
| 290 |
)
|
| 291 |
|
|
|
|
| 292 |
# Launch the app
|
| 293 |
demo.launch(share=False)
|