Spaces:
Sleeping
Sleeping
File size: 5,724 Bytes
a1229ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import argparse
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', type=int, default=12345)
parser.add_argument('--dataset', type=str, default='celeba', help='dataset type')
parser.add_argument('--img_size', type=int, default=64, help='image size, 32 for cifar10, 48 for stl10')
parser.add_argument('--bottom_width', type=int, default=8, help='init resolution, 4 for cifar10, 6 for stl10')
parser.add_argument('--channels', type=int, default=3, help='image channels')
parser.add_argument('--data_path', type=str, default='./data', help='dataset path')
parser.add_argument('--exp_name', type=str, help='experiment name')
parser.add_argument('--gpu_ids', type=str, help='visible GPU ids')
parser.add_argument('--num_workers', type=int, default=1, help='number of cpu threads to use during batch generation')
parser.add_argument('--checkpoint', type=str, help='checkpoint path')
# train
parser.add_argument('--arch', type=str, default='arch_cifar10', help='architecture name')
# parser.add_argument('--arch_D', type=str, help='architecture name of D')
parser.add_argument('--genotypes_exp', type=str, help='ues genotypes of the experiment')
parser.add_argument('--genotype_name', type=str, default='latest', help='genotype name')
parser.add_argument('--max_epoch_G', type=int, default=500, help='max number of epoch for training G')
parser.add_argument('--max_iter_G', type=int, default=None, help='max number of iteration for training G')
parser.add_argument('--max_iter_D', type=int, default=None, help='max number of iteration for training D')
parser.add_argument('--n_critic', type=int, default=1, help='number of training steps for discriminator per iter')
parser.add_argument('--gen_bs', type=int, default=128, help='batch size of G')
parser.add_argument('--dis_bs', type=int, default=128, help='batch size of D')
parser.add_argument('--gf_dim', type=int, default=128, help='base channel-dim of G')
parser.add_argument('--df_dim', type=int, default=512, help='base channel-dim of D')
parser.add_argument('--g_lr', type=float, default=0.0002, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0002, help='learning rate for D')
parser.add_argument('--lr_decay', action='store_true', help='learning rate decay or not')
parser.add_argument('--beta1', type=float, default=0.0, help='decay of first order momentum of gradient')
parser.add_argument('--beta2', type=float, default=0.9, help='decay of first order momentum of gradient')
parser.add_argument('--init_type', type=str, default='normal',
choices=['normal', 'orth', 'xavier_uniform', 'false'],
help='init type')
parser.add_argument('--bu', type=float, default=4, help='Upper bound on the RBF Kernel')
parser.add_argument('--bl', type=float, default=1/4, help='Lower bound on the RBF Kernel')
parser.add_argument('--trainprocedure', type=str, default='saturate', help="Train procedure: ['linear','fixed','saturate','saturate_linear']")
parser.add_argument('--buincrate', type=float, default=2, help='Rate of increase of upper bound')
parser.add_argument('--bu_end', type=float, default=64, help='Upper bound on the RBF Kernel')
parser.add_argument('--d_spectral_norm', type=str2bool, default=True,
help='add spectral_norm on discriminator or not')
parser.add_argument('--g_spectral_norm', type=str2bool, default=False,
help='add spectral_norm on generator or not')
parser.add_argument('--latent_dim', type=int, default=120, help='dimensionality of the latent space')
parser.add_argument('--act', type=str, default='pmishact', help="Activation: ['relu','silu','swish','mish','pmishact']")
parser.add_argument('--modified_mmd', type=str2bool, default=True, help="set modified_mmd True for kick starting the discriminator with Modified MMD-GAN rep loss")
parser.add_argument('--lambda_m', type=float, default=0.0001, help='lambda_m for the modified mmd rep loss')
# val
parser.add_argument('--print_freq', type=int, default=50, help='frequency of verbose')
parser.add_argument('--val_freq', type=int, default=20, help='frequency of validation')
parser.add_argument('--num_eval_imgs', type=int, default=50000)
parser.add_argument('--eval_batch_size', type=int, default=100)
# search
parser.add_argument('--gumbel_softmax', type=str2bool, default=False, help='use gumbel softmax or not')
parser.add_argument('--derive_freq', type=int, default=1, help='frequency (epoch) of deriving arch')
parser.add_argument('--derive_per_epoch', type=int, default=0, help='number of deriving per epoch')
parser.add_argument('--tau_max', type=float, default=5, help='max tau for gumbel softmax')
parser.add_argument('--tau_min', type=float, default=0.1, help='min tau for gumbel softmax')
parser.add_argument('--amending_coefficient', type=float, default=0, help='coeff of Amended Gradient Estimation trick')
parser.add_argument('--draw_arch', type=str2bool, default=False, help='visualize the searched architecture or not')
parser.add_argument('--early_stop', type=str2bool, default=False, help='use early stop strategy or not')
parser.add_argument('--resume', action='store_true')
opt = parser.parse_args()
return opt
|