import argparse def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--random_seed', type=int, default=12345) parser.add_argument('--dataset', type=str, default='celeba', help='dataset type') parser.add_argument('--img_size', type=int, default=64, help='image size, 32 for cifar10, 48 for stl10') parser.add_argument('--bottom_width', type=int, default=8, help='init resolution, 4 for cifar10, 6 for stl10') parser.add_argument('--channels', type=int, default=3, help='image channels') parser.add_argument('--data_path', type=str, default='./data', help='dataset path') parser.add_argument('--exp_name', type=str, help='experiment name') parser.add_argument('--gpu_ids', type=str, help='visible GPU ids') parser.add_argument('--num_workers', type=int, default=1, help='number of cpu threads to use during batch generation') parser.add_argument('--checkpoint', type=str, help='checkpoint path') # train parser.add_argument('--arch', type=str, default='arch_cifar10', help='architecture name') # parser.add_argument('--arch_D', type=str, help='architecture name of D') parser.add_argument('--genotypes_exp', type=str, help='ues genotypes of the experiment') parser.add_argument('--genotype_name', type=str, default='latest', help='genotype name') parser.add_argument('--max_epoch_G', type=int, default=500, help='max number of epoch for training G') parser.add_argument('--max_iter_G', type=int, default=None, help='max number of iteration for training G') parser.add_argument('--max_iter_D', type=int, default=None, help='max number of iteration for training D') parser.add_argument('--n_critic', type=int, default=1, help='number of training steps for discriminator per iter') parser.add_argument('--gen_bs', type=int, default=128, help='batch size of G') parser.add_argument('--dis_bs', type=int, default=128, help='batch size of D') parser.add_argument('--gf_dim', type=int, default=128, help='base channel-dim of G') parser.add_argument('--df_dim', type=int, default=512, help='base channel-dim of D') parser.add_argument('--g_lr', type=float, default=0.0002, help='learning rate for G') parser.add_argument('--d_lr', type=float, default=0.0002, help='learning rate for D') parser.add_argument('--lr_decay', action='store_true', help='learning rate decay or not') parser.add_argument('--beta1', type=float, default=0.0, help='decay of first order momentum of gradient') parser.add_argument('--beta2', type=float, default=0.9, help='decay of first order momentum of gradient') parser.add_argument('--init_type', type=str, default='normal', choices=['normal', 'orth', 'xavier_uniform', 'false'], help='init type') parser.add_argument('--bu', type=float, default=4, help='Upper bound on the RBF Kernel') parser.add_argument('--bl', type=float, default=1/4, help='Lower bound on the RBF Kernel') parser.add_argument('--trainprocedure', type=str, default='saturate', help="Train procedure: ['linear','fixed','saturate','saturate_linear']") parser.add_argument('--buincrate', type=float, default=2, help='Rate of increase of upper bound') parser.add_argument('--bu_end', type=float, default=64, help='Upper bound on the RBF Kernel') parser.add_argument('--d_spectral_norm', type=str2bool, default=True, help='add spectral_norm on discriminator or not') parser.add_argument('--g_spectral_norm', type=str2bool, default=False, help='add spectral_norm on generator or not') parser.add_argument('--latent_dim', type=int, default=120, help='dimensionality of the latent space') parser.add_argument('--act', type=str, default='pmishact', help="Activation: ['relu','silu','swish','mish','pmishact']") parser.add_argument('--modified_mmd', type=str2bool, default=True, help="set modified_mmd True for kick starting the discriminator with Modified MMD-GAN rep loss") parser.add_argument('--lambda_m', type=float, default=0.0001, help='lambda_m for the modified mmd rep loss') # val parser.add_argument('--print_freq', type=int, default=50, help='frequency of verbose') parser.add_argument('--val_freq', type=int, default=20, help='frequency of validation') parser.add_argument('--num_eval_imgs', type=int, default=50000) parser.add_argument('--eval_batch_size', type=int, default=100) # search parser.add_argument('--gumbel_softmax', type=str2bool, default=False, help='use gumbel softmax or not') parser.add_argument('--derive_freq', type=int, default=1, help='frequency (epoch) of deriving arch') parser.add_argument('--derive_per_epoch', type=int, default=0, help='number of deriving per epoch') parser.add_argument('--tau_max', type=float, default=5, help='max tau for gumbel softmax') parser.add_argument('--tau_min', type=float, default=0.1, help='min tau for gumbel softmax') parser.add_argument('--amending_coefficient', type=float, default=0, help='coeff of Amended Gradient Estimation trick') parser.add_argument('--draw_arch', type=str2bool, default=False, help='visualize the searched architecture or not') parser.add_argument('--early_stop', type=str2bool, default=False, help='use early stop strategy or not') parser.add_argument('--resume', action='store_true') opt = parser.parse_args() return opt