prithivMLmods commited on
Commit
5075711
·
verified ·
1 Parent(s): 7167d7c
Files changed (3) hide show
  1. app.py +465 -0
  2. pre-requirements.txt +1 -0
  3. requirements.txt +36 -0
app.py ADDED
@@ -0,0 +1,465 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import uuid
4
+ import json
5
+ import time
6
+ import asyncio
7
+ from threading import Thread
8
+ from pathlib import Path
9
+ from io import BytesIO
10
+ from typing import Optional, Tuple, Dict, Any, Iterable
11
+
12
+ import gradio as gr
13
+ import spaces
14
+ import torch
15
+ import numpy as np
16
+ from PIL import Image
17
+ import cv2
18
+ import requests
19
+ import fitz
20
+
21
+ from transformers import (
22
+ Qwen3VLMoeForConditionalGeneration,
23
+ AutoProcessor,
24
+ TextIteratorStreamer,
25
+ )
26
+ from transformers.image_utils import load_image
27
+
28
+ from gradio.themes import Soft
29
+ from gradio.themes.utils import colors, fonts, sizes
30
+
31
+ colors.thistle = colors.Color(
32
+ name="thistle",
33
+ c50="#F9F5F9", c100="#F0E8F1", c200="#E7DBE8", c300="#DECEE0",
34
+ c400="#D2BFD8", c500="#D8BFD8", c600="#B59CB7", c700="#927996",
35
+ c800="#6F5675", c900="#4C3454", c950="#291233",
36
+ )
37
+
38
+ colors.red_gray = colors.Color(
39
+ name="red_gray",
40
+ c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
41
+ c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
42
+ c800="#732d2d", c900="#5f2626", c950="#4d2020",
43
+ )
44
+
45
+ class ThistleTheme(Soft):
46
+ def __init__(
47
+ self,
48
+ *,
49
+ primary_hue: colors.Color | str = colors.gray,
50
+ secondary_hue: colors.Color | str = colors.thistle,
51
+ neutral_hue: colors.Color | str = colors.slate,
52
+ text_size: sizes.Size | str = sizes.text_lg,
53
+ font: fonts.Font | str | Iterable[fonts.Font | str] = (
54
+ fonts.GoogleFont("Inconsolata"), "Arial", "sans-serif",
55
+ ),
56
+ font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
57
+ fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
58
+ ),
59
+ ):
60
+ super().__init__(
61
+ primary_hue=primary_hue,
62
+ secondary_hue=secondary_hue,
63
+ neutral_hue=neutral_hue,
64
+ text_size=text_size,
65
+ font=font,
66
+ font_mono=font_mono,
67
+ )
68
+ super().set(
69
+ background_fill_primary="*primary_50",
70
+ background_fill_primary_dark="*primary_900",
71
+ body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
72
+ body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
73
+ button_primary_text_color="black",
74
+ button_primary_text_color_hover="white",
75
+ button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_400)",
76
+ button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_600)",
77
+ button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
78
+ button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
79
+ button_secondary_text_color="black",
80
+ button_secondary_text_color_hover="white",
81
+ button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
82
+ button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
83
+ button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
84
+ button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
85
+ button_cancel_background_fill=f"linear-gradient(90deg, {colors.red_gray.c400}, {colors.red_gray.c500})",
86
+ button_cancel_background_fill_dark=f"linear-gradient(90deg, {colors.red_gray.c700}, {colors.red_gray.c800})",
87
+ button_cancel_background_fill_hover=f"linear-gradient(90deg, {colors.red_gray.c500}, {colors.red_gray.c600})",
88
+ button_cancel_background_fill_hover_dark=f"linear-gradient(90deg, {colors.red_gray.c800}, {colors.red_gray.c900})",
89
+ button_cancel_text_color="white",
90
+ button_cancel_text_color_dark="white",
91
+ button_cancel_text_color_hover="white",
92
+ button_cancel_text_color_hover_dark="white",
93
+ slider_color="*secondary_300",
94
+ slider_color_dark="*secondary_600",
95
+ block_title_text_weight="600",
96
+ block_border_width="3px",
97
+ block_shadow="*shadow_drop_lg",
98
+ button_primary_shadow="*shadow_drop_lg",
99
+ button_large_padding="11px",
100
+ color_accent_soft="*primary_100",
101
+ block_label_background_fill="*primary_200",
102
+ )
103
+
104
+ thistle_theme = ThistleTheme()
105
+
106
+ css = """
107
+ #main-title h1 {
108
+ font-size: 2.3em !important;
109
+ }
110
+ #output-title h2 {
111
+ font-size: 2.1em !important;
112
+ }
113
+ :root {
114
+ --color-grey-50: #f9fafb;
115
+ --banner-background: var(--secondary-400);
116
+ --banner-text-color: var(--primary-100);
117
+ --banner-background-dark: var(--secondary-800);
118
+ --banner-text-color-dark: var(--primary-100);
119
+ --banner-chrome-height: calc(16px + 43px);
120
+ --chat-chrome-height-wide-no-banner: 320px;
121
+ --chat-chrome-height-narrow-no-banner: 450px;
122
+ --chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
123
+ --chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
124
+ }
125
+ .banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
126
+ .banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
127
+ body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
128
+ body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
129
+ .toast-body { background-color: var(--color-grey-50); }
130
+ .html-container:has(.css-styles) { padding: 0; margin: 0; }
131
+ .css-styles { height: 0; }
132
+ .model-message { text-align: end; }
133
+ .model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
134
+ .user-input-container .multimodal-textbox{ border: none !important; }
135
+ .control-button { height: 51px; }
136
+ button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
137
+ button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
138
+ .opt-out-message { top: 8px; }
139
+ .opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
140
+ div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
141
+ div.no-padding { padding: 0 !important; }
142
+ @media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
143
+ @media (max-width: 1024px) {
144
+ .responsive-row { flex-direction: column; }
145
+ .model-message { text-align: start; font-size: 10px !important; }
146
+ .model-dropdown-container { flex-direction: column; align-items: flex-start; }
147
+ div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
148
+ }
149
+ @media (max-width: 400px) {
150
+ .responsive-row { flex-direction: column; }
151
+ .model-message { text-align: start; font-size: 10px !important; }
152
+ .model-dropdown-container { flex-direction: column; align-items: flex-start; }
153
+ div.block.chatbot { max-height: 360px !important; }
154
+ }
155
+ @media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
156
+ @media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
157
+ """
158
+
159
+ MAX_MAX_NEW_TOKENS = 4096
160
+ DEFAULT_MAX_NEW_TOKENS = 2048
161
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
162
+
163
+ print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
164
+ print("torch.__version__ =", torch.__version__)
165
+ print("torch.version.cuda =", torch.version.cuda)
166
+ print("cuda available:", torch.cuda.is_available())
167
+ print("cuda device count:", torch.cuda.device_count())
168
+ if torch.cuda.is_available():
169
+ print("current device:", torch.cuda.current_device())
170
+ print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
171
+ print("Using device:", device)
172
+
173
+ MODEL_ID_Q3VL = "Qwen/Qwen3-VL-30B-A3B-Instruct"
174
+ processor_q3vl = AutoProcessor.from_pretrained(MODEL_ID_Q3VL, trust_remote_code=True, use_fast=False)
175
+ model_q3vl = Qwen3VLMoeForConditionalGeneration.from_pretrained(
176
+ MODEL_ID_Q3VL,
177
+ trust_remote_code=True,
178
+ dtype=torch.float16
179
+ ).to(device).eval()
180
+
181
+ def extract_gif_frames(gif_path: str):
182
+ if not gif_path:
183
+ return []
184
+ with Image.open(gif_path) as gif:
185
+ total_frames = gif.n_frames
186
+ frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
187
+ frames = []
188
+ for i in frame_indices:
189
+ gif.seek(i)
190
+ frames.append(gif.convert("RGB").copy())
191
+ return frames
192
+
193
+ def downsample_video(video_path):
194
+ vidcap = cv2.VideoCapture(video_path)
195
+ total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
196
+ frames = []
197
+ frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
198
+ for i in frame_indices:
199
+ vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
200
+ success, image = vidcap.read()
201
+ if success:
202
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
203
+ pil_image = Image.fromarray(image)
204
+ frames.append(pil_image)
205
+ vidcap.release()
206
+ return frames
207
+
208
+ def convert_pdf_to_images(file_path: str, dpi: int = 200):
209
+ if not file_path:
210
+ return []
211
+ images = []
212
+ pdf_document = fitz.open(file_path)
213
+ zoom = dpi / 72.0
214
+ mat = fitz.Matrix(zoom, zoom)
215
+ for page_num in range(len(pdf_document)):
216
+ page = pdf_document.load_page(page_num)
217
+ pix = page.get_pixmap(matrix=mat)
218
+ img_data = pix.tobytes("png")
219
+ images.append(Image.open(BytesIO(img_data)))
220
+ pdf_document.close()
221
+ return images
222
+
223
+ def get_initial_pdf_state() -> Dict[str, Any]:
224
+ return {"pages": [], "total_pages": 0, "current_page_index": 0}
225
+
226
+ def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
227
+ state = get_initial_pdf_state()
228
+ if not file_path:
229
+ return None, state, '<div style="text-align:center;">No file loaded</div>'
230
+ try:
231
+ pages = convert_pdf_to_images(file_path)
232
+ if not pages:
233
+ return None, state, '<div style="text-align:center;">Could not load file</div>'
234
+ state["pages"] = pages
235
+ state["total_pages"] = len(pages)
236
+ page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
237
+ return pages[0], state, page_info_html
238
+ except Exception as e:
239
+ return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'
240
+
241
+ def navigate_pdf_page(direction: str, state: Dict[str, Any]):
242
+ if not state or not state["pages"]:
243
+ return None, state, '<div style="text-align:center;">No file loaded</div>'
244
+ current_index = state["current_page_index"]
245
+ total_pages = state["total_pages"]
246
+ if direction == "prev":
247
+ new_index = max(0, current_index - 1)
248
+ elif direction == "next":
249
+ new_index = min(total_pages - 1, current_index + 1)
250
+ else:
251
+ new_index = current_index
252
+ state["current_page_index"] = new_index
253
+ image_preview = state["pages"][new_index]
254
+ page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
255
+ return image_preview, state, page_info_html
256
+
257
+ @spaces.GPU
258
+ def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
259
+ if image is None:
260
+ yield "Please upload an image.", "Please upload an image."
261
+ return
262
+ messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
263
+ prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
264
+ inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
265
+ streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
266
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
267
+ thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
268
+ thread.start()
269
+ buffer = ""
270
+ for new_text in streamer:
271
+ buffer += new_text
272
+ time.sleep(0.01)
273
+ yield buffer, buffer
274
+
275
+ @spaces.GPU
276
+ def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
277
+ if video_path is None:
278
+ yield "Please upload a video.", "Please upload a video."
279
+ return
280
+ frames = downsample_video(video_path)
281
+ if not frames:
282
+ yield "Could not process video.", "Could not process video."
283
+ return
284
+ messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
285
+ for frame in frames:
286
+ messages[0]["content"].insert(0, {"type": "image"})
287
+ prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
288
+ inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
289
+ streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
290
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
291
+ thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
292
+ thread.start()
293
+ buffer = ""
294
+ for new_text in streamer:
295
+ buffer += new_text
296
+ buffer = buffer.replace("<|im_end|>", "")
297
+ time.sleep(0.01)
298
+ yield buffer, buffer
299
+
300
+ @spaces.GPU
301
+ def generate_pdf(text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
302
+ if not state or not state["pages"]:
303
+ yield "Please upload a PDF file first.", "Please upload a PDF file first."
304
+ return
305
+ page_images = state["pages"]
306
+ full_response = ""
307
+ for i, image in enumerate(page_images):
308
+ page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
309
+ yield full_response + page_header, full_response + page_header
310
+ messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
311
+ prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
312
+ inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
313
+ streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
314
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
315
+ thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
316
+ thread.start()
317
+ page_buffer = ""
318
+ for new_text in streamer:
319
+ page_buffer += new_text
320
+ yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
321
+ time.sleep(0.01)
322
+ full_response += page_header + page_buffer + "\n\n"
323
+
324
+ @spaces.GPU
325
+ def generate_caption(image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
326
+ if image is None:
327
+ yield "Please upload an image to caption.", "Please upload an image to caption."
328
+ return
329
+ system_prompt = (
330
+ "You are an AI assistant that rigorously follows this response protocol: For every input image, your primary "
331
+ "task is to write a precise caption that captures the essence of the image in clear, concise, and contextually "
332
+ "accurate language. Along with the caption, provide a structured set of attributes describing the visual "
333
+ "elements, including details such as objects, people, actions, colors, environment, mood, and other notable "
334
+ "characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or "
335
+ "subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; "
336
+ "only return the formatted caption, attributes, and class_name."
337
+ )
338
+ messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}]
339
+ prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
340
+ inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
341
+ streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
342
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
343
+ thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
344
+ thread.start()
345
+ buffer = ""
346
+ for new_text in streamer:
347
+ buffer += new_text
348
+ time.sleep(0.01)
349
+ yield buffer, buffer
350
+
351
+ @spaces.GPU
352
+ def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
353
+ if gif_path is None:
354
+ yield "Please upload a GIF.", "Please upload a GIF."
355
+ return
356
+ frames = extract_gif_frames(gif_path)
357
+ if not frames:
358
+ yield "Could not process GIF.", "Could not process GIF."
359
+ return
360
+ messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
361
+ for frame in frames:
362
+ messages[0]["content"].insert(0, {"type": "image"})
363
+ prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
364
+ inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
365
+ streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
366
+ generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
367
+ thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
368
+ thread.start()
369
+ buffer = ""
370
+ for new_text in streamer:
371
+ buffer += new_text
372
+ buffer = buffer.replace("<|im_end|>", "")
373
+ time.sleep(0.01)
374
+ yield buffer, buffer
375
+
376
+ image_examples = [["Perform OCR on the image precisely and reconstruct it correctly...", "examples/images/1.jpg"],
377
+ ["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
378
+ ["Solve the problem...", "examples/images/3.png"]]
379
+ video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"],
380
+ ["Explain the video in detail.", "examples/videos/2.mp4"]]
381
+ pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"],
382
+ ["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]]
383
+ gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"],
384
+ ["Describe this GIF.", "examples/gifs/2.gif"]]
385
+ caption_examples = [["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG"],
386
+ ["examples/captions/2.png"], ["examples/captions/3.png"]]
387
+
388
+ with gr.Blocks(theme=thistle_theme, css=css) as demo:
389
+ pdf_state = gr.State(value=get_initial_pdf_state())
390
+ gr.Markdown("# **Qwen-3VL:Multimodal**", elem_id="main-title")
391
+ with gr.Row():
392
+ with gr.Column(scale=2):
393
+ with gr.Tabs():
394
+ with gr.TabItem("Image Inference"):
395
+ image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
396
+ image_upload = gr.Image(type="pil", label="Image", height=290)
397
+ image_submit = gr.Button("Submit", variant="primary")
398
+ gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
399
+
400
+ with gr.TabItem("Video Inference"):
401
+ video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
402
+ video_upload = gr.Video(label="Video", height=290)
403
+ video_submit = gr.Button("Submit", variant="primary")
404
+ gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
405
+
406
+ with gr.TabItem("PDF Inference"):
407
+ with gr.Row():
408
+ with gr.Column(scale=1):
409
+ pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
410
+ pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
411
+ pdf_submit = gr.Button("Submit", variant="primary")
412
+ with gr.Column(scale=1):
413
+ pdf_preview_img = gr.Image(label="PDF Preview", height=290)
414
+ with gr.Row():
415
+ prev_page_btn = gr.Button("◀ Previous")
416
+ page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
417
+ next_page_btn = gr.Button("Next ▶")
418
+ gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])
419
+
420
+ with gr.TabItem("Gif Inference"):
421
+ gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'")
422
+ gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290)
423
+ gif_submit = gr.Button("Submit", variant="primary")
424
+ gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload])
425
+
426
+ with gr.TabItem("Caption"):
427
+ caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
428
+ caption_submit = gr.Button("Generate Caption", variant="primary")
429
+ gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
430
+
431
+ with gr.Accordion("Advanced options", open=False):
432
+ max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
433
+ temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
434
+ top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
435
+ top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
436
+ repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
437
+
438
+ with gr.Column(scale=3):
439
+ gr.Markdown("## Output", elem_id="output-title")
440
+ output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
441
+ with gr.Accordion("(Result.md)", open=False):
442
+ markdown_output = gr.Markdown(label="(Result.Md)")
443
+
444
+ image_submit.click(fn=generate_image,
445
+ inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
446
+ outputs=[output, markdown_output])
447
+ video_submit.click(fn=generate_video,
448
+ inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
449
+ outputs=[output, markdown_output])
450
+ pdf_submit.click(fn=generate_pdf,
451
+ inputs=[pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
452
+ outputs=[output, markdown_output])
453
+ gif_submit.click(fn=generate_gif,
454
+ inputs=[gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
455
+ outputs=[output, markdown_output])
456
+ caption_submit.click(fn=generate_caption,
457
+ inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
458
+ outputs=[output, markdown_output])
459
+
460
+ pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
461
+ prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
462
+ next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
463
+
464
+ if __name__ == "__main__":
465
+ demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
pre-requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ pip>=23.0.0
requirements.txt ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ git+https://github.com/huggingface/accelerate.git
2
+ git+https://github.com/huggingface/peft.git
3
+ transformers-stream-generator
4
+ transformers==4.57.0
5
+ huggingface_hub
6
+ albumentations
7
+ qwen-vl-utils
8
+ pyvips-binary
9
+ sentencepiece
10
+ opencv-python
11
+ docling-core
12
+ python-docx
13
+ torchvision
14
+ supervision
15
+ matplotlib
16
+ pdf2image
17
+ num2words
18
+ reportlab
19
+ html2text
20
+ xformers
21
+ markdown
22
+ requests
23
+ pymupdf
24
+ loguru
25
+ hf_xet
26
+ spaces
27
+ pyvips
28
+ pillow
29
+ gradio
30
+ einops
31
+ httpx
32
+ click
33
+ torch
34
+ fpdf
35
+ timm
36
+ av