Spaces:
Running
on
Zero
Running
on
Zero
upload app (#2)
Browse files- upload app (722805a33d072b43dba802b3141cae5324ae3223)
- app.py +465 -0
- pre-requirements.txt +1 -0
- requirements.txt +36 -0
app.py
ADDED
|
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import uuid
|
| 4 |
+
import json
|
| 5 |
+
import time
|
| 6 |
+
import asyncio
|
| 7 |
+
from threading import Thread
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
from typing import Optional, Tuple, Dict, Any, Iterable
|
| 11 |
+
|
| 12 |
+
import gradio as gr
|
| 13 |
+
import spaces
|
| 14 |
+
import torch
|
| 15 |
+
import numpy as np
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import cv2
|
| 18 |
+
import requests
|
| 19 |
+
import fitz
|
| 20 |
+
|
| 21 |
+
from transformers import (
|
| 22 |
+
Qwen3VLMoeForConditionalGeneration,
|
| 23 |
+
AutoProcessor,
|
| 24 |
+
TextIteratorStreamer,
|
| 25 |
+
)
|
| 26 |
+
from transformers.image_utils import load_image
|
| 27 |
+
|
| 28 |
+
from gradio.themes import Soft
|
| 29 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 30 |
+
|
| 31 |
+
colors.thistle = colors.Color(
|
| 32 |
+
name="thistle",
|
| 33 |
+
c50="#F9F5F9", c100="#F0E8F1", c200="#E7DBE8", c300="#DECEE0",
|
| 34 |
+
c400="#D2BFD8", c500="#D8BFD8", c600="#B59CB7", c700="#927996",
|
| 35 |
+
c800="#6F5675", c900="#4C3454", c950="#291233",
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
colors.red_gray = colors.Color(
|
| 39 |
+
name="red_gray",
|
| 40 |
+
c50="#f7eded", c100="#f5dcdc", c200="#efb4b4", c300="#e78f8f",
|
| 41 |
+
c400="#d96a6a", c500="#c65353", c600="#b24444", c700="#8f3434",
|
| 42 |
+
c800="#732d2d", c900="#5f2626", c950="#4d2020",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
class ThistleTheme(Soft):
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
*,
|
| 49 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 50 |
+
secondary_hue: colors.Color | str = colors.thistle,
|
| 51 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 52 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 53 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 54 |
+
fonts.GoogleFont("Inconsolata"), "Arial", "sans-serif",
|
| 55 |
+
),
|
| 56 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 57 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 58 |
+
),
|
| 59 |
+
):
|
| 60 |
+
super().__init__(
|
| 61 |
+
primary_hue=primary_hue,
|
| 62 |
+
secondary_hue=secondary_hue,
|
| 63 |
+
neutral_hue=neutral_hue,
|
| 64 |
+
text_size=text_size,
|
| 65 |
+
font=font,
|
| 66 |
+
font_mono=font_mono,
|
| 67 |
+
)
|
| 68 |
+
super().set(
|
| 69 |
+
background_fill_primary="*primary_50",
|
| 70 |
+
background_fill_primary_dark="*primary_900",
|
| 71 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 72 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 73 |
+
button_primary_text_color="black",
|
| 74 |
+
button_primary_text_color_hover="white",
|
| 75 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_400, *secondary_400)",
|
| 76 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_600)",
|
| 77 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
|
| 78 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
|
| 79 |
+
button_secondary_text_color="black",
|
| 80 |
+
button_secondary_text_color_hover="white",
|
| 81 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 82 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 83 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 84 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 85 |
+
button_cancel_background_fill=f"linear-gradient(90deg, {colors.red_gray.c400}, {colors.red_gray.c500})",
|
| 86 |
+
button_cancel_background_fill_dark=f"linear-gradient(90deg, {colors.red_gray.c700}, {colors.red_gray.c800})",
|
| 87 |
+
button_cancel_background_fill_hover=f"linear-gradient(90deg, {colors.red_gray.c500}, {colors.red_gray.c600})",
|
| 88 |
+
button_cancel_background_fill_hover_dark=f"linear-gradient(90deg, {colors.red_gray.c800}, {colors.red_gray.c900})",
|
| 89 |
+
button_cancel_text_color="white",
|
| 90 |
+
button_cancel_text_color_dark="white",
|
| 91 |
+
button_cancel_text_color_hover="white",
|
| 92 |
+
button_cancel_text_color_hover_dark="white",
|
| 93 |
+
slider_color="*secondary_300",
|
| 94 |
+
slider_color_dark="*secondary_600",
|
| 95 |
+
block_title_text_weight="600",
|
| 96 |
+
block_border_width="3px",
|
| 97 |
+
block_shadow="*shadow_drop_lg",
|
| 98 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 99 |
+
button_large_padding="11px",
|
| 100 |
+
color_accent_soft="*primary_100",
|
| 101 |
+
block_label_background_fill="*primary_200",
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
thistle_theme = ThistleTheme()
|
| 105 |
+
|
| 106 |
+
css = """
|
| 107 |
+
#main-title h1 {
|
| 108 |
+
font-size: 2.3em !important;
|
| 109 |
+
}
|
| 110 |
+
#output-title h2 {
|
| 111 |
+
font-size: 2.1em !important;
|
| 112 |
+
}
|
| 113 |
+
:root {
|
| 114 |
+
--color-grey-50: #f9fafb;
|
| 115 |
+
--banner-background: var(--secondary-400);
|
| 116 |
+
--banner-text-color: var(--primary-100);
|
| 117 |
+
--banner-background-dark: var(--secondary-800);
|
| 118 |
+
--banner-text-color-dark: var(--primary-100);
|
| 119 |
+
--banner-chrome-height: calc(16px + 43px);
|
| 120 |
+
--chat-chrome-height-wide-no-banner: 320px;
|
| 121 |
+
--chat-chrome-height-narrow-no-banner: 450px;
|
| 122 |
+
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
|
| 123 |
+
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
|
| 124 |
+
}
|
| 125 |
+
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
|
| 126 |
+
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
|
| 127 |
+
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
|
| 128 |
+
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
|
| 129 |
+
.toast-body { background-color: var(--color-grey-50); }
|
| 130 |
+
.html-container:has(.css-styles) { padding: 0; margin: 0; }
|
| 131 |
+
.css-styles { height: 0; }
|
| 132 |
+
.model-message { text-align: end; }
|
| 133 |
+
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
|
| 134 |
+
.user-input-container .multimodal-textbox{ border: none !important; }
|
| 135 |
+
.control-button { height: 51px; }
|
| 136 |
+
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
|
| 137 |
+
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
|
| 138 |
+
.opt-out-message { top: 8px; }
|
| 139 |
+
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
|
| 140 |
+
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
|
| 141 |
+
div.no-padding { padding: 0 !important; }
|
| 142 |
+
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
|
| 143 |
+
@media (max-width: 1024px) {
|
| 144 |
+
.responsive-row { flex-direction: column; }
|
| 145 |
+
.model-message { text-align: start; font-size: 10px !important; }
|
| 146 |
+
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 147 |
+
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
|
| 148 |
+
}
|
| 149 |
+
@media (max-width: 400px) {
|
| 150 |
+
.responsive-row { flex-direction: column; }
|
| 151 |
+
.model-message { text-align: start; font-size: 10px !important; }
|
| 152 |
+
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 153 |
+
div.block.chatbot { max-height: 360px !important; }
|
| 154 |
+
}
|
| 155 |
+
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
|
| 156 |
+
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
MAX_MAX_NEW_TOKENS = 4096
|
| 160 |
+
DEFAULT_MAX_NEW_TOKENS = 2048
|
| 161 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 162 |
+
|
| 163 |
+
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
|
| 164 |
+
print("torch.__version__ =", torch.__version__)
|
| 165 |
+
print("torch.version.cuda =", torch.version.cuda)
|
| 166 |
+
print("cuda available:", torch.cuda.is_available())
|
| 167 |
+
print("cuda device count:", torch.cuda.device_count())
|
| 168 |
+
if torch.cuda.is_available():
|
| 169 |
+
print("current device:", torch.cuda.current_device())
|
| 170 |
+
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
|
| 171 |
+
print("Using device:", device)
|
| 172 |
+
|
| 173 |
+
MODEL_ID_Q3VL = "Qwen/Qwen3-VL-30B-A3B-Instruct"
|
| 174 |
+
processor_q3vl = AutoProcessor.from_pretrained(MODEL_ID_Q3VL, trust_remote_code=True, use_fast=False)
|
| 175 |
+
model_q3vl = Qwen3VLMoeForConditionalGeneration.from_pretrained(
|
| 176 |
+
MODEL_ID_Q3VL,
|
| 177 |
+
trust_remote_code=True,
|
| 178 |
+
dtype=torch.float16
|
| 179 |
+
).to(device).eval()
|
| 180 |
+
|
| 181 |
+
def extract_gif_frames(gif_path: str):
|
| 182 |
+
if not gif_path:
|
| 183 |
+
return []
|
| 184 |
+
with Image.open(gif_path) as gif:
|
| 185 |
+
total_frames = gif.n_frames
|
| 186 |
+
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 187 |
+
frames = []
|
| 188 |
+
for i in frame_indices:
|
| 189 |
+
gif.seek(i)
|
| 190 |
+
frames.append(gif.convert("RGB").copy())
|
| 191 |
+
return frames
|
| 192 |
+
|
| 193 |
+
def downsample_video(video_path):
|
| 194 |
+
vidcap = cv2.VideoCapture(video_path)
|
| 195 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 196 |
+
frames = []
|
| 197 |
+
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
|
| 198 |
+
for i in frame_indices:
|
| 199 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
| 200 |
+
success, image = vidcap.read()
|
| 201 |
+
if success:
|
| 202 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 203 |
+
pil_image = Image.fromarray(image)
|
| 204 |
+
frames.append(pil_image)
|
| 205 |
+
vidcap.release()
|
| 206 |
+
return frames
|
| 207 |
+
|
| 208 |
+
def convert_pdf_to_images(file_path: str, dpi: int = 200):
|
| 209 |
+
if not file_path:
|
| 210 |
+
return []
|
| 211 |
+
images = []
|
| 212 |
+
pdf_document = fitz.open(file_path)
|
| 213 |
+
zoom = dpi / 72.0
|
| 214 |
+
mat = fitz.Matrix(zoom, zoom)
|
| 215 |
+
for page_num in range(len(pdf_document)):
|
| 216 |
+
page = pdf_document.load_page(page_num)
|
| 217 |
+
pix = page.get_pixmap(matrix=mat)
|
| 218 |
+
img_data = pix.tobytes("png")
|
| 219 |
+
images.append(Image.open(BytesIO(img_data)))
|
| 220 |
+
pdf_document.close()
|
| 221 |
+
return images
|
| 222 |
+
|
| 223 |
+
def get_initial_pdf_state() -> Dict[str, Any]:
|
| 224 |
+
return {"pages": [], "total_pages": 0, "current_page_index": 0}
|
| 225 |
+
|
| 226 |
+
def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
|
| 227 |
+
state = get_initial_pdf_state()
|
| 228 |
+
if not file_path:
|
| 229 |
+
return None, state, '<div style="text-align:center;">No file loaded</div>'
|
| 230 |
+
try:
|
| 231 |
+
pages = convert_pdf_to_images(file_path)
|
| 232 |
+
if not pages:
|
| 233 |
+
return None, state, '<div style="text-align:center;">Could not load file</div>'
|
| 234 |
+
state["pages"] = pages
|
| 235 |
+
state["total_pages"] = len(pages)
|
| 236 |
+
page_info_html = f'<div style="text-align:center;">Page 1 / {state["total_pages"]}</div>'
|
| 237 |
+
return pages[0], state, page_info_html
|
| 238 |
+
except Exception as e:
|
| 239 |
+
return None, state, f'<div style="text-align:center;">Failed to load preview: {e}</div>'
|
| 240 |
+
|
| 241 |
+
def navigate_pdf_page(direction: str, state: Dict[str, Any]):
|
| 242 |
+
if not state or not state["pages"]:
|
| 243 |
+
return None, state, '<div style="text-align:center;">No file loaded</div>'
|
| 244 |
+
current_index = state["current_page_index"]
|
| 245 |
+
total_pages = state["total_pages"]
|
| 246 |
+
if direction == "prev":
|
| 247 |
+
new_index = max(0, current_index - 1)
|
| 248 |
+
elif direction == "next":
|
| 249 |
+
new_index = min(total_pages - 1, current_index + 1)
|
| 250 |
+
else:
|
| 251 |
+
new_index = current_index
|
| 252 |
+
state["current_page_index"] = new_index
|
| 253 |
+
image_preview = state["pages"][new_index]
|
| 254 |
+
page_info_html = f'<div style="text-align:center;">Page {new_index + 1} / {total_pages}</div>'
|
| 255 |
+
return image_preview, state, page_info_html
|
| 256 |
+
|
| 257 |
+
@spaces.GPU
|
| 258 |
+
def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 259 |
+
if image is None:
|
| 260 |
+
yield "Please upload an image.", "Please upload an image."
|
| 261 |
+
return
|
| 262 |
+
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
|
| 263 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 264 |
+
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 265 |
+
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 266 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 267 |
+
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 268 |
+
thread.start()
|
| 269 |
+
buffer = ""
|
| 270 |
+
for new_text in streamer:
|
| 271 |
+
buffer += new_text
|
| 272 |
+
time.sleep(0.01)
|
| 273 |
+
yield buffer, buffer
|
| 274 |
+
|
| 275 |
+
@spaces.GPU
|
| 276 |
+
def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 277 |
+
if video_path is None:
|
| 278 |
+
yield "Please upload a video.", "Please upload a video."
|
| 279 |
+
return
|
| 280 |
+
frames = downsample_video(video_path)
|
| 281 |
+
if not frames:
|
| 282 |
+
yield "Could not process video.", "Could not process video."
|
| 283 |
+
return
|
| 284 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
|
| 285 |
+
for frame in frames:
|
| 286 |
+
messages[0]["content"].insert(0, {"type": "image"})
|
| 287 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 288 |
+
inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
|
| 289 |
+
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 290 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
|
| 291 |
+
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 292 |
+
thread.start()
|
| 293 |
+
buffer = ""
|
| 294 |
+
for new_text in streamer:
|
| 295 |
+
buffer += new_text
|
| 296 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 297 |
+
time.sleep(0.01)
|
| 298 |
+
yield buffer, buffer
|
| 299 |
+
|
| 300 |
+
@spaces.GPU
|
| 301 |
+
def generate_pdf(text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 302 |
+
if not state or not state["pages"]:
|
| 303 |
+
yield "Please upload a PDF file first.", "Please upload a PDF file first."
|
| 304 |
+
return
|
| 305 |
+
page_images = state["pages"]
|
| 306 |
+
full_response = ""
|
| 307 |
+
for i, image in enumerate(page_images):
|
| 308 |
+
page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
|
| 309 |
+
yield full_response + page_header, full_response + page_header
|
| 310 |
+
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
|
| 311 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 312 |
+
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 313 |
+
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 314 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 315 |
+
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 316 |
+
thread.start()
|
| 317 |
+
page_buffer = ""
|
| 318 |
+
for new_text in streamer:
|
| 319 |
+
page_buffer += new_text
|
| 320 |
+
yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
|
| 321 |
+
time.sleep(0.01)
|
| 322 |
+
full_response += page_header + page_buffer + "\n\n"
|
| 323 |
+
|
| 324 |
+
@spaces.GPU
|
| 325 |
+
def generate_caption(image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 326 |
+
if image is None:
|
| 327 |
+
yield "Please upload an image to caption.", "Please upload an image to caption."
|
| 328 |
+
return
|
| 329 |
+
system_prompt = (
|
| 330 |
+
"You are an AI assistant that rigorously follows this response protocol: For every input image, your primary "
|
| 331 |
+
"task is to write a precise caption that captures the essence of the image in clear, concise, and contextually "
|
| 332 |
+
"accurate language. Along with the caption, provide a structured set of attributes describing the visual "
|
| 333 |
+
"elements, including details such as objects, people, actions, colors, environment, mood, and other notable "
|
| 334 |
+
"characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or "
|
| 335 |
+
"subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; "
|
| 336 |
+
"only return the formatted caption, attributes, and class_name."
|
| 337 |
+
)
|
| 338 |
+
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}]
|
| 339 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 340 |
+
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 341 |
+
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 342 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
| 343 |
+
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 344 |
+
thread.start()
|
| 345 |
+
buffer = ""
|
| 346 |
+
for new_text in streamer:
|
| 347 |
+
buffer += new_text
|
| 348 |
+
time.sleep(0.01)
|
| 349 |
+
yield buffer, buffer
|
| 350 |
+
|
| 351 |
+
@spaces.GPU
|
| 352 |
+
def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
| 353 |
+
if gif_path is None:
|
| 354 |
+
yield "Please upload a GIF.", "Please upload a GIF."
|
| 355 |
+
return
|
| 356 |
+
frames = extract_gif_frames(gif_path)
|
| 357 |
+
if not frames:
|
| 358 |
+
yield "Could not process GIF.", "Could not process GIF."
|
| 359 |
+
return
|
| 360 |
+
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
|
| 361 |
+
for frame in frames:
|
| 362 |
+
messages[0]["content"].insert(0, {"type": "image"})
|
| 363 |
+
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 364 |
+
inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
|
| 365 |
+
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
|
| 366 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
|
| 367 |
+
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
|
| 368 |
+
thread.start()
|
| 369 |
+
buffer = ""
|
| 370 |
+
for new_text in streamer:
|
| 371 |
+
buffer += new_text
|
| 372 |
+
buffer = buffer.replace("<|im_end|>", "")
|
| 373 |
+
time.sleep(0.01)
|
| 374 |
+
yield buffer, buffer
|
| 375 |
+
|
| 376 |
+
image_examples = [["Perform OCR on the image precisely and reconstruct it correctly...", "examples/images/1.jpg"],
|
| 377 |
+
["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
|
| 378 |
+
["Solve the problem...", "examples/images/3.png"]]
|
| 379 |
+
video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"],
|
| 380 |
+
["Explain the video in detail.", "examples/videos/2.mp4"]]
|
| 381 |
+
pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"],
|
| 382 |
+
["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]]
|
| 383 |
+
gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"],
|
| 384 |
+
["Describe this GIF.", "examples/gifs/2.gif"]]
|
| 385 |
+
caption_examples = [["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/candy.JPG"],
|
| 386 |
+
["examples/captions/2.png"], ["examples/captions/3.png"]]
|
| 387 |
+
|
| 388 |
+
with gr.Blocks(theme=thistle_theme, css=css) as demo:
|
| 389 |
+
pdf_state = gr.State(value=get_initial_pdf_state())
|
| 390 |
+
gr.Markdown("# **Qwen-3VL:Multimodal**", elem_id="main-title")
|
| 391 |
+
with gr.Row():
|
| 392 |
+
with gr.Column(scale=2):
|
| 393 |
+
with gr.Tabs():
|
| 394 |
+
with gr.TabItem("Image Inference"):
|
| 395 |
+
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 396 |
+
image_upload = gr.Image(type="pil", label="Image", height=290)
|
| 397 |
+
image_submit = gr.Button("Submit", variant="primary")
|
| 398 |
+
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
|
| 399 |
+
|
| 400 |
+
with gr.TabItem("Video Inference"):
|
| 401 |
+
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
|
| 402 |
+
video_upload = gr.Video(label="Video", height=290)
|
| 403 |
+
video_submit = gr.Button("Submit", variant="primary")
|
| 404 |
+
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
|
| 405 |
+
|
| 406 |
+
with gr.TabItem("PDF Inference"):
|
| 407 |
+
with gr.Row():
|
| 408 |
+
with gr.Column(scale=1):
|
| 409 |
+
pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
|
| 410 |
+
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
|
| 411 |
+
pdf_submit = gr.Button("Submit", variant="primary")
|
| 412 |
+
with gr.Column(scale=1):
|
| 413 |
+
pdf_preview_img = gr.Image(label="PDF Preview", height=290)
|
| 414 |
+
with gr.Row():
|
| 415 |
+
prev_page_btn = gr.Button("◀ Previous")
|
| 416 |
+
page_info = gr.HTML('<div style="text-align:center;">No file loaded</div>')
|
| 417 |
+
next_page_btn = gr.Button("Next ▶")
|
| 418 |
+
gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])
|
| 419 |
+
|
| 420 |
+
with gr.TabItem("Gif Inference"):
|
| 421 |
+
gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'")
|
| 422 |
+
gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290)
|
| 423 |
+
gif_submit = gr.Button("Submit", variant="primary")
|
| 424 |
+
gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload])
|
| 425 |
+
|
| 426 |
+
with gr.TabItem("Caption"):
|
| 427 |
+
caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
|
| 428 |
+
caption_submit = gr.Button("Generate Caption", variant="primary")
|
| 429 |
+
gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
|
| 430 |
+
|
| 431 |
+
with gr.Accordion("Advanced options", open=False):
|
| 432 |
+
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
|
| 433 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
|
| 434 |
+
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
| 435 |
+
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
|
| 436 |
+
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
|
| 437 |
+
|
| 438 |
+
with gr.Column(scale=3):
|
| 439 |
+
gr.Markdown("## Output", elem_id="output-title")
|
| 440 |
+
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
|
| 441 |
+
with gr.Accordion("(Result.md)", open=False):
|
| 442 |
+
markdown_output = gr.Markdown(label="(Result.Md)")
|
| 443 |
+
|
| 444 |
+
image_submit.click(fn=generate_image,
|
| 445 |
+
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 446 |
+
outputs=[output, markdown_output])
|
| 447 |
+
video_submit.click(fn=generate_video,
|
| 448 |
+
inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 449 |
+
outputs=[output, markdown_output])
|
| 450 |
+
pdf_submit.click(fn=generate_pdf,
|
| 451 |
+
inputs=[pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 452 |
+
outputs=[output, markdown_output])
|
| 453 |
+
gif_submit.click(fn=generate_gif,
|
| 454 |
+
inputs=[gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 455 |
+
outputs=[output, markdown_output])
|
| 456 |
+
caption_submit.click(fn=generate_caption,
|
| 457 |
+
inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
|
| 458 |
+
outputs=[output, markdown_output])
|
| 459 |
+
|
| 460 |
+
pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 461 |
+
prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 462 |
+
next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
|
| 463 |
+
|
| 464 |
+
if __name__ == "__main__":
|
| 465 |
+
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)
|
pre-requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pip>=23.0.0
|
requirements.txt
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/accelerate.git
|
| 2 |
+
git+https://github.com/huggingface/peft.git
|
| 3 |
+
transformers-stream-generator
|
| 4 |
+
transformers==4.57.0
|
| 5 |
+
huggingface_hub
|
| 6 |
+
albumentations
|
| 7 |
+
qwen-vl-utils
|
| 8 |
+
pyvips-binary
|
| 9 |
+
sentencepiece
|
| 10 |
+
opencv-python
|
| 11 |
+
docling-core
|
| 12 |
+
python-docx
|
| 13 |
+
torchvision
|
| 14 |
+
supervision
|
| 15 |
+
matplotlib
|
| 16 |
+
pdf2image
|
| 17 |
+
num2words
|
| 18 |
+
reportlab
|
| 19 |
+
html2text
|
| 20 |
+
xformers
|
| 21 |
+
markdown
|
| 22 |
+
requests
|
| 23 |
+
pymupdf
|
| 24 |
+
loguru
|
| 25 |
+
hf_xet
|
| 26 |
+
spaces
|
| 27 |
+
pyvips
|
| 28 |
+
pillow
|
| 29 |
+
gradio
|
| 30 |
+
einops
|
| 31 |
+
httpx
|
| 32 |
+
click
|
| 33 |
+
torch
|
| 34 |
+
fpdf
|
| 35 |
+
timm
|
| 36 |
+
av
|