import os import random import uuid import json import time import asyncio from threading import Thread from pathlib import Path from io import BytesIO from typing import Optional, Tuple, Dict, Any, Iterable import re import gradio as gr import spaces import torch import numpy as np from PIL import Image import cv2 import requests import fitz import supervision as sv from transformers import ( Qwen3VLMoeForConditionalGeneration, AutoProcessor, TextIteratorStreamer, ) from transformers.image_utils import load_image from gradio.themes import Soft from gradio.themes.utils import colors, fonts, sizes colors.orange_red = colors.Color( name="orange_red", c50="#FFF0E5", c100="#FFE0CC", c200="#FFC299", c300="#FFA366", c400="#FF8533", c500="#FF4500", c600="#E63E00", c700="#CC3700", c800="#B33000", c900="#992900", c950="#802200", ) class OrangeRedTheme(Soft): def __init__( self, *, primary_hue: colors.Color | str = colors.gray, secondary_hue: colors.Color | str = colors.orange_red, # Use the new color neutral_hue: colors.Color | str = colors.slate, text_size: sizes.Size | str = sizes.text_lg, font: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("Outfit"), "Arial", "sans-serif", ), font_mono: fonts.Font | str | Iterable[fonts.Font | str] = ( fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace", ), ): super().__init__( primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue, text_size=text_size, font=font, font_mono=font_mono, ) super().set( background_fill_primary="*primary_50", background_fill_primary_dark="*primary_900", body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)", body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)", button_primary_text_color="white", button_primary_text_color_hover="white", button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)", button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)", button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)", button_secondary_text_color="black", button_secondary_text_color_hover="white", button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)", button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)", button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)", button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)", slider_color="*secondary_500", slider_color_dark="*secondary_600", block_title_text_weight="600", block_border_width="3px", block_shadow="*shadow_drop_lg", button_primary_shadow="*shadow_drop_lg", button_large_padding="11px", color_accent_soft="*primary_100", block_label_background_fill="*primary_200", ) orange_red_theme = OrangeRedTheme() css = """ #main-title h1 { font-size: 2.3em !important; } #output-title h2 { font-size: 2.1em !important; } :root { --color-grey-50: #f9fafb; --banner-background: var(--secondary-400); --banner-text-color: var(--primary-100); --banner-background-dark: var(--secondary-800); --banner-text-color-dark: var(--primary-100); --banner-chrome-height: calc(16px + 43px); --chat-chrome-height-wide-no-banner: 320px; --chat-chrome-height-narrow-no-banner: 450px; --chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height)); --chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height)); } .banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; } .banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; } body.dark .banner-message { background-color: var(--banner-background-dark) !important; } body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; } .toast-body { background-color: var(--color-grey-50); } .html-container:has(.css-styles) { padding: 0; margin: 0; } .css-styles { height: 0; } .model-message { text-align: end; } .model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; } .user-input-container .multimodal-textbox{ border: none !important; } .control-button { height: 51px; } button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); } button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); } .opt-out-message { top: 8px; } .opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; } div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; } div.no-padding { padding: 0 !important; } @media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } } @media (max-width: 1024px) { .responsive-row { flex-direction: column; } .model-message { text-align: start; font-size: 10px !important; } .model-dropdown-container { flex-direction: column; align-items: flex-start; } div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; } } @media (max-width: 400px) { .responsive-row { flex-direction: column; } .model-message { text-align: start; font-size: 10px !important; } .model-dropdown-container { flex-direction: column; align-items: flex-start; } div.block.chatbot { max-height: 360px !important; } } @media (max-height: 932px) { .chatbot { max-height: 500px !important; } } @media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } } """ MAX_MAX_NEW_TOKENS = 4096 DEFAULT_MAX_NEW_TOKENS = 1024 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) print("torch.__version__ =", torch.__version__) print("torch.version.cuda =", torch.version.cuda) print("cuda available:", torch.cuda.is_available()) print("cuda device count:", torch.cuda.device_count()) if torch.cuda.is_available(): print("current device:", torch.cuda.current_device()) print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) print("Using device:", device) MODEL_ID_Q3VL = "Qwen/Qwen3-VL-30B-A3B-Instruct" processor_q3vl = AutoProcessor.from_pretrained(MODEL_ID_Q3VL, trust_remote_code=True, use_fast=False) model_q3vl = Qwen3VLMoeForConditionalGeneration.from_pretrained( MODEL_ID_Q3VL, trust_remote_code=True, dtype=torch.float16 ).to(device).eval() def extract_gif_frames(gif_path: str): if not gif_path: return [] with Image.open(gif_path) as gif: total_frames = gif.n_frames frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) frames = [] for i in frame_indices: gif.seek(i) frames.append(gif.convert("RGB").copy()) return frames def downsample_video(video_path): vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) frames = [] frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) frames.append(pil_image) vidcap.release() return frames def convert_pdf_to_images(file_path: str, dpi: int = 200): if not file_path: return [] images = [] pdf_document = fitz.open(file_path) zoom = dpi / 72.0 mat = fitz.Matrix(zoom, zoom) for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) pix = page.get_pixmap(matrix=mat) img_data = pix.tobytes("png") images.append(Image.open(BytesIO(img_data))) pdf_document.close() return images def get_initial_pdf_state() -> Dict[str, Any]: return {"pages": [], "total_pages": 0, "current_page_index": 0} def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]: state = get_initial_pdf_state() if not file_path: return None, state, '
No file loaded
' try: pages = convert_pdf_to_images(file_path) if not pages: return None, state, '
Could not load file
' state["pages"] = pages state["total_pages"] = len(pages) page_info_html = f'
Page 1 / {state["total_pages"]}
' return pages[0], state, page_info_html except Exception as e: return None, state, f'
Failed to load preview: {e}
' def navigate_pdf_page(direction: str, state: Dict[str, Any]): if not state or not state["pages"]: return None, state, '
No file loaded
' current_index = state["current_page_index"] total_pages = state["total_pages"] if direction == "prev": new_index = max(0, current_index - 1) elif direction == "next": new_index = min(total_pages - 1, current_index + 1) else: new_index = current_index state["current_page_index"] = new_index image_preview = state["pages"][new_index] page_info_html = f'
Page {new_index + 1} / {total_pages}
' return image_preview, state, page_info_html def draw_boxes_on_image(image: Image.Image, text_output: str, object_name: str) -> Tuple[Image.Image, str]: try: # Extract the JSON part of the text output match = re.search(r'\[\s*\[.*?\]\s*\]', text_output, re.DOTALL) if not match: return image, f"Could not find coordinates in the model output: {text_output}" boxes_str = match.group(0) boxes = json.loads(boxes_str) if not boxes or not isinstance(boxes[0], list): return image, f"No valid boxes found in parsed data: {boxes}" width, height = image.size np_image = np.array(image.convert("RGB")) # Denormalize coordinates xyxy = [] for box in boxes: x1, y1, x2, y2 = box xyxy.append([x1 * width, y1 * height, x2 * width, y2 * height]) detections = sv.Detections(xyxy=np.array(xyxy)) bounding_box_annotator = sv.BoxAnnotator(thickness=2) label_annotator = sv.LabelAnnotator(text_thickness=1, text_scale=0.5) labels = [f"{object_name} #{i+1}" for i in range(len(detections))] annotated_image = bounding_box_annotator.annotate(scene=np_image.copy(), detections=detections) annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections, labels=labels) return Image.fromarray(annotated_image), text_output except (json.JSONDecodeError, IndexError, TypeError) as e: return image, f"Failed to parse or draw boxes. Error: {e}\nModel Output:\n{text_output}" def draw_points_on_image(image: Image.Image, text_output: str) -> Tuple[Image.Image, str]: try: match = re.search(r'\[\s*\[.*?\]\s*\]', text_output, re.DOTALL) if not match: return image, f"Could not find coordinates in the model output: {text_output}" points_str = match.group(0) points = json.loads(points_str) if not points or not isinstance(points[0], list): return image, f"No valid points found in parsed data: {points}" width, height = image.size np_image = np.array(image.convert("RGB")) # Denormalize coordinates xy = [] for point in points: x, y = point xy.append([x * width, y * height]) points_array = np.array(xy).reshape(1, -1, 2) key_points = sv.KeyPoints(xy=points_array) point_annotator = sv.VertexAnnotator(radius=5, color=sv.Color.RED) annotated_image = point_annotator.annotate(scene=np_image.copy(), key_points=key_points) return Image.fromarray(annotated_image), text_output except (json.JSONDecodeError, IndexError, TypeError) as e: return image, f"Failed to parse or draw points. Error: {e}\nModel Output:\n{text_output}" @spaces.GPU def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if image is None: yield "Please upload an image.", "Please upload an image." return messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer, buffer @spaces.GPU def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if video_path is None: yield "Please upload a video.", "Please upload a video." return frames = downsample_video(video_path) if not frames: yield "Could not process video.", "Could not process video." return messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] for frame in frames: messages[0]["content"].insert(0, {"type": "image"}) prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device) streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty} thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer, buffer @spaces.GPU def generate_pdf(text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if not state or not state["pages"]: yield "Please upload a PDF file first.", "Please upload a PDF file first." return page_images = state["pages"] full_response = "" for i, image in enumerate(page_images): page_header = f"--- Page {i+1}/{len(page_images)} ---\n" yield full_response + page_header, full_response + page_header messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}] prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) thread.start() page_buffer = "" for new_text in streamer: page_buffer += new_text yield full_response + page_header + page_buffer, full_response + page_header + page_buffer time.sleep(0.01) full_response += page_header + page_buffer + "\n\n" @spaces.GPU def generate_caption(image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if image is None: yield "Please upload an image to caption.", "Please upload an image to caption." return system_prompt = ( "You are an AI assistant that rigorously follows this response protocol: For every input image, your primary " "task is to write a precise caption that captures the essence of the image in clear, concise, and contextually " "accurate language. Along with the caption, provide a structured set of attributes describing the visual " "elements, including details such as objects, people, actions, colors, environment, mood, and other notable " "characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or " "subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; " "only return the formatted caption, attributes, and class_name." ) messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}] prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer, buffer @spaces.GPU def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if gif_path is None: yield "Please upload a GIF.", "Please upload a GIF." return frames = extract_gif_frames(gif_path) if not frames: yield "Could not process GIF.", "Could not process GIF." return messages = [{"role": "user", "content": [{"type": "text", "text": text}]}] for frame in frames: messages[0]["content"].insert(0, {"type": "image"}) prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device) streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True) generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty} thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer, buffer @spaces.GPU def generate_object_detection(image: Image.Image, text: str, max_new_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if image is None: yield image, "Please upload an image." return if not text: yield image, "Please enter the object name to detect." return prompt = ( f"You are an expert object detection model. Your task is to find all instances of '{text}' in the image. " "You must respond ONLY with a JSON list of bounding boxes. Each bounding box must be in the format " "[x_min, y_min, x_max, y_max], where the coordinates are normalized to be between 0 and 1. " "Do not provide any other text, explanation, or preamble. For example: [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]" ) messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}] prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) # This task is not streamed because we need the full output to parse and draw boxes outputs = model_q3vl.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) response_text = processor_q3vl.decode(outputs[0], skip_special_tokens=True).strip() # Extract only the user-facing part of the response final_text = response_text.split('<|im_end|>')[-1].strip() if '<|im_end|>' in response_text else response_text annotated_image, raw_output = draw_boxes_on_image(image, final_text, text) yield annotated_image, raw_output @spaces.GPU def generate_point_detection(image: Image.Image, text: str, max_new_tokens: int = 256, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2): if image is None: yield image, "Please upload an image." return if not text: yield image, "Please enter the object/point name to detect." return prompt = ( f"You are an expert point detection model. Your task is to find the specific location of '{text}' in the image. " "You must respond ONLY with a JSON list containing a single coordinate pair. The coordinate must be in the format " "[[x, y]], where the coordinates are normalized to be between 0 and 1. " "Do not provide any other text, explanation, or preamble. For example: [[0.45, 0.67]]" ) messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": prompt}]}] prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) outputs = model_q3vl.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False) response_text = processor_q3vl.decode(outputs[0], skip_special_tokens=True).strip() final_text = response_text.split('<|im_end|>')[-1].strip() if '<|im_end|>' in response_text else response_text annotated_image, raw_output = draw_points_on_image(image, final_text) yield annotated_image, raw_output image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"], ["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"], ["Solve the problem...", "examples/images/3.png"]] video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"], ["Explain the video in detail.", "examples/videos/2.mp4"]] pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"], ["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]] gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"], ["Describe this GIF.", "examples/gifs/2.gif"]] caption_examples = [["examples/captions/1.JPG"], ["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]] object_detection_examples = [["a cat", "examples/detection/cat_dog.jpg"], ["the person in the red shirt", "examples/detection/people.jpg"]] point_detection_examples = [["the dog's nose", "examples/detection/cat_dog.jpg"], ["the clock on the wall", "examples/detection/room.jpg"]] with gr.Blocks(theme=orange_red_theme, css=css) as demo: pdf_state = gr.State(value=get_initial_pdf_state()) gr.Markdown("# **Qwen-3VL:Multimodal**", elem_id="main-title") with gr.Row(): with gr.Column(scale=2): with gr.Tabs(): with gr.TabItem("Image Inference"): image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") image_upload = gr.Image(type="pil", label="Upload Image", height=290) image_submit = gr.Button("Submit", variant="primary") gr.Examples(examples=image_examples, inputs=[image_query, image_upload]) with gr.TabItem("Object Detection"): obj_det_query = gr.Textbox(label="Object to Detect", placeholder="e.g., 'a car', 'the dog'") obj_det_upload = gr.Image(type="pil", label="Upload Image", height=290) obj_det_submit = gr.Button("Detect Objects", variant="primary") gr.Examples(examples=object_detection_examples, inputs=[obj_det_query, obj_det_upload]) with gr.TabItem("Point Detection"): point_det_query = gr.Textbox(label="Point to Detect", placeholder="e.g., 'the cat's left eye'") point_det_upload = gr.Image(type="pil", label="Upload Image", height=290) point_det_submit = gr.Button("Detect Point", variant="primary") gr.Examples(examples=point_detection_examples, inputs=[point_det_query, point_det_upload]) with gr.TabItem("PDF Inference"): with gr.Row(): with gr.Column(scale=1): pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'") pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"]) pdf_submit = gr.Button("Submit", variant="primary") with gr.Column(scale=1): pdf_preview_img = gr.Image(label="PDF Preview", height=290) with gr.Row(): prev_page_btn = gr.Button("◀ Previous") page_info = gr.HTML('
No file loaded
') next_page_btn = gr.Button("Next ▶") gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload]) with gr.TabItem("Gif Inference"): gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'") gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290) gif_submit = gr.Button("Submit", variant="primary") gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload]) with gr.TabItem("Caption"): caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290) caption_submit = gr.Button("Generate Caption", variant="primary") gr.Examples(examples=caption_examples, inputs=[caption_image_upload]) with gr.TabItem("Video Inference"): video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...") video_upload = gr.Video(label="Upload Video(≤30s)", height=290) video_submit = gr.Button("Submit", variant="primary") gr.Examples(examples=video_examples, inputs=[video_query, video_upload]) with gr.Accordion("Advanced options", open=False): max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS) temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6) top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9) top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50) repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2) with gr.Column(scale=3): gr.Markdown("## Output", elem_id="output-title") output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True, visible=True) markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[ {"left": "$$", "right": "$$", "display": True}, {"left": "$", "right": "$", "display": False} ], visible=True) annotated_image_output = gr.Image(label="Annotated Image", visible=False) raw_detection_output = gr.Textbox(label="Raw Detection Output", interactive=False, lines=4, show_copy_button=True, visible=False) def switch_output_visibility(tab_name): is_detection = tab_name in ["Object Detection", "Point Detection"] return { output: gr.update(visible=not is_detection), markdown_output: gr.update(visible=not is_detection), annotated_image_output: gr.update(visible=is_detection), raw_detection_output: gr.update(visible=is_detection), } image_submit.click(fn=generate_image, inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output]) video_submit.click(fn=generate_video, inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output]) pdf_submit.click(fn=generate_pdf, inputs=[pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output]) gif_submit.click(fn=generate_gif, inputs=[gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output]) caption_submit.click(fn=generate_caption, inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[output, markdown_output]) obj_det_submit.click( fn=lambda: { annotated_image_output: gr.update(visible=True), raw_detection_output: gr.update(visible=True), output: gr.update(visible=False), markdown_output: gr.update(visible=False) }, outputs=[annotated_image_output, raw_detection_output, output, markdown_output] ).then( fn=generate_object_detection, inputs=[obj_det_upload, obj_det_query, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[annotated_image_output, raw_detection_output] ) point_det_submit.click( fn=lambda: { annotated_image_output: gr.update(visible=True), raw_detection_output: gr.update(visible=True), output: gr.update(visible=False), markdown_output: gr.update(visible=False) }, outputs=[annotated_image_output, raw_detection_output, output, markdown_output] ).then( fn=generate_point_detection, inputs=[point_det_upload, point_det_query, max_new_tokens, temperature, top_p, top_k, repetition_penalty], outputs=[annotated_image_output, raw_detection_output] ) pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info]) prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info]) next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info]) if __name__ == "__main__": demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)