import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
from pathlib import Path
from io import BytesIO
from typing import Optional, Tuple, Dict, Any, Iterable
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import requests
import fitz
from transformers import (
Qwen3VLMoeForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers.image_utils import load_image
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
# --- Theme and CSS Definition ---
# Define the new OrangeRed color palette
colors.orange_red = colors.Color(
name="orange_red",
c50="#FFF0E5",
c100="#FFE0CC",
c200="#FFC299",
c300="#FFA366",
c400="#FF8533",
c500="#FF4500", # OrangeRed base color
c600="#E63E00",
c700="#CC3700",
c800="#B33000",
c900="#992900",
c950="#802200",
)
class OrangeRedTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.orange_red, # Use the new color
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
# Instantiate the new theme
orange_red_theme = OrangeRedTheme()
css = """
#main-title h1 {
font-size: 2.3em !important;
}
#output-title h2 {
font-size: 2.1em !important;
}
:root {
--color-grey-50: #f9fafb;
--banner-background: var(--secondary-400);
--banner-text-color: var(--primary-100);
--banner-background-dark: var(--secondary-800);
--banner-text-color-dark: var(--primary-100);
--banner-chrome-height: calc(16px + 43px);
--chat-chrome-height-wide-no-banner: 320px;
--chat-chrome-height-narrow-no-banner: 450px;
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
}
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
.toast-body { background-color: var(--color-grey-50); }
.html-container:has(.css-styles) { padding: 0; margin: 0; }
.css-styles { height: 0; }
.model-message { text-align: end; }
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
.user-input-container .multimodal-textbox{ border: none !important; }
.control-button { height: 51px; }
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
.opt-out-message { top: 8px; }
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
div.no-padding { padding: 0 !important; }
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
@media (max-width: 1024px) {
.responsive-row { flex-direction: column; }
.model-message { text-align: start; font-size: 10px !important; }
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
}
@media (max-width: 400px) {
.responsive-row { flex-direction: column; }
.model-message { text-align: start; font-size: 10px !important; }
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
div.block.chatbot { max-height: 360px !important; }
}
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
"""
MAX_MAX_NEW_TOKENS = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
MODEL_ID_Q3VL = "Qwen/Qwen3-VL-30B-A3B-Instruct"
processor_q3vl = AutoProcessor.from_pretrained(MODEL_ID_Q3VL, trust_remote_code=True, use_fast=False)
model_q3vl = Qwen3VLMoeForConditionalGeneration.from_pretrained(
MODEL_ID_Q3VL,
trust_remote_code=True,
dtype=torch.float16
).to(device).eval()
def extract_gif_frames(gif_path: str):
if not gif_path:
return []
with Image.open(gif_path) as gif:
total_frames = gif.n_frames
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
frames = []
for i in frame_indices:
gif.seek(i)
frames.append(gif.convert("RGB").copy())
return frames
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
frame_indices = np.linspace(0, total_frames - 1, min(total_frames, 10), dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
frames.append(pil_image)
vidcap.release()
return frames
def convert_pdf_to_images(file_path: str, dpi: int = 200):
if not file_path:
return []
images = []
pdf_document = fitz.open(file_path)
zoom = dpi / 72.0
mat = fitz.Matrix(zoom, zoom)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
images.append(Image.open(BytesIO(img_data)))
pdf_document.close()
return images
def get_initial_pdf_state() -> Dict[str, Any]:
return {"pages": [], "total_pages": 0, "current_page_index": 0}
def load_and_preview_pdf(file_path: Optional[str]) -> Tuple[Optional[Image.Image], Dict[str, Any], str]:
state = get_initial_pdf_state()
if not file_path:
return None, state, '
No file loaded
'
try:
pages = convert_pdf_to_images(file_path)
if not pages:
return None, state, 'Could not load file
'
state["pages"] = pages
state["total_pages"] = len(pages)
page_info_html = f'Page 1 / {state["total_pages"]}
'
return pages[0], state, page_info_html
except Exception as e:
return None, state, f'Failed to load preview: {e}
'
def navigate_pdf_page(direction: str, state: Dict[str, Any]):
if not state or not state["pages"]:
return None, state, 'No file loaded
'
current_index = state["current_page_index"]
total_pages = state["total_pages"]
if direction == "prev":
new_index = max(0, current_index - 1)
elif direction == "next":
new_index = min(total_pages - 1, current_index + 1)
else:
new_index = current_index
state["current_page_index"] = new_index
image_preview = state["pages"][new_index]
page_info_html = f'Page {new_index + 1} / {total_pages}
'
return image_preview, state, page_info_html
@spaces.GPU
def generate_image(text: str, image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if image is None:
yield "Please upload an image.", "Please upload an image."
return
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_video(text: str, video_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if video_path is None:
yield "Please upload a video.", "Please upload a video."
return
frames = downsample_video(video_path)
if not frames:
yield "Could not process video.", "Could not process video."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
for frame in frames:
messages[0]["content"].insert(0, {"type": "image"})
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_pdf(text: str, state: Dict[str, Any], max_new_tokens: int = 2048, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if not state or not state["pages"]:
yield "Please upload a PDF file first.", "Please upload a PDF file first."
return
page_images = state["pages"]
full_response = ""
for i, image in enumerate(page_images):
page_header = f"--- Page {i+1}/{len(page_images)} ---\n"
yield full_response + page_header, full_response + page_header
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": text}]}]
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
page_buffer = ""
for new_text in streamer:
page_buffer += new_text
yield full_response + page_header + page_buffer, full_response + page_header + page_buffer
time.sleep(0.01)
full_response += page_header + page_buffer + "\n\n"
@spaces.GPU
def generate_caption(image: Image.Image, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if image is None:
yield "Please upload an image to caption.", "Please upload an image to caption."
return
system_prompt = (
"You are an AI assistant that rigorously follows this response protocol: For every input image, your primary "
"task is to write a precise caption that captures the essence of the image in clear, concise, and contextually "
"accurate language. Along with the caption, provide a structured set of attributes describing the visual "
"elements, including details such as objects, people, actions, colors, environment, mood, and other notable "
"characteristics. Ensure captions are precise, neutral, and descriptive, avoiding unnecessary elaboration or "
"subjective interpretation unless explicitly required. Do not reference the rules or instructions in the output; "
"only return the formatted caption, attributes, and class_name."
)
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": system_prompt}]}]
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer, buffer
@spaces.GPU
def generate_gif(text: str, gif_path: str, max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
if gif_path is None:
yield "Please upload a GIF.", "Please upload a GIF."
return
frames = extract_gif_frames(gif_path)
if not frames:
yield "Could not process GIF.", "Could not process GIF."
return
messages = [{"role": "user", "content": [{"type": "text", "text": text}]}]
for frame in frames:
messages[0]["content"].insert(0, {"type": "image"})
prompt_full = processor_q3vl.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor_q3vl(text=[prompt_full], images=frames, return_tensors="pt", padding=True).to(device)
streamer = TextIteratorStreamer(processor_q3vl, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "top_k": top_k, "repetition_penalty": repetition_penalty}
thread = Thread(target=model_q3vl.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer, buffer
image_examples = [["Perform OCR on the image...", "examples/images/1.jpg"],
["Caption the image. Describe the safety measures shown in the image. Conclude whether the situation is (safe or unsafe)...", "examples/images/2.jpg"],
["Solve the problem...", "examples/images/3.png"]]
video_examples = [["Explain the Ad video in detail.", "examples/videos/1.mp4"],
["Explain the video in detail.", "examples/videos/2.mp4"]]
pdf_examples = [["Extract the content precisely.", "examples/pdfs/doc1.pdf"],
["Analyze and provide a short report.", "examples/pdfs/doc2.pdf"]]
gif_examples = [["Describe this GIF.", "examples/gifs/1.gif"],
["Describe this GIF.", "examples/gifs/2.gif"]]
caption_examples = [["examples/captions/1.JPG"],
["examples/captions/2.jpeg"], ["examples/captions/3.jpeg"]]
with gr.Blocks(theme=orange_red_theme, css=css) as demo:
pdf_state = gr.State(value=get_initial_pdf_state())
gr.Markdown("# **Qwen-3VL:Multimodal**", elem_id="main-title")
with gr.Row():
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Image Inference"):
image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
image_upload = gr.Image(type="pil", label="Upload Image", height=290)
image_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=image_examples, inputs=[image_query, image_upload])
with gr.TabItem("Video Inference"):
video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
video_upload = gr.Video(label="Upload Video(≤30s)", height=290)
video_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=video_examples, inputs=[video_query, video_upload])
with gr.TabItem("PDF Inference"):
with gr.Row():
with gr.Column(scale=1):
pdf_query = gr.Textbox(label="Query Input", placeholder="e.g., 'Summarize this document'")
pdf_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
pdf_submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
pdf_preview_img = gr.Image(label="PDF Preview", height=290)
with gr.Row():
prev_page_btn = gr.Button("◀ Previous")
page_info = gr.HTML('No file loaded
')
next_page_btn = gr.Button("Next ▶")
gr.Examples(examples=pdf_examples, inputs=[pdf_query, pdf_upload])
with gr.TabItem("Gif Inference"):
gif_query = gr.Textbox(label="Query Input", placeholder="e.g., 'What is happening in this gif?'")
gif_upload = gr.Image(type="filepath", label="Upload GIF", height=290)
gif_submit = gr.Button("Submit", variant="primary")
gr.Examples(examples=gif_examples, inputs=[gif_query, gif_upload])
with gr.TabItem("Caption"):
caption_image_upload = gr.Image(type="pil", label="Image to Caption", height=290)
caption_submit = gr.Button("Generate Caption", variant="primary")
gr.Examples(examples=caption_examples, inputs=[caption_image_upload])
with gr.Accordion("Advanced options", open=False):
max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
with gr.Column(scale=3):
gr.Markdown("## Output", elem_id="output-title")
output = gr.Textbox(label="Raw Output Stream", interactive=False, lines=14, show_copy_button=True)
with gr.Accordion("(Result.md)", open=False):
markdown_output = gr.Markdown(label="(Result.Md)", latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
])
image_submit.click(fn=generate_image,
inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
video_submit.click(fn=generate_video,
inputs=[video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
pdf_submit.click(fn=generate_pdf,
inputs=[pdf_query, pdf_state, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
gif_submit.click(fn=generate_gif,
inputs=[gif_query, gif_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
caption_submit.click(fn=generate_caption,
inputs=[caption_image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
outputs=[output, markdown_output])
pdf_upload.change(fn=load_and_preview_pdf, inputs=[pdf_upload], outputs=[pdf_preview_img, pdf_state, page_info])
prev_page_btn.click(fn=lambda s: navigate_pdf_page("prev", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
next_page_btn.click(fn=lambda s: navigate_pdf_page("next", s), inputs=[pdf_state], outputs=[pdf_preview_img, pdf_state, page_info])
if __name__ == "__main__":
demo.queue(max_size=50).launch(mcp_server=True, ssr_mode=False, show_error=True)