Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,577 Bytes
41993a8 bea725a 41993a8 bea725a 41993a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import os
import sys
from typing import Iterable, Optional, Tuple, Dict, Any, List
import hashlib
import spaces
import re
import time
import click
import gradio as gr
from io import BytesIO
from PIL import Image
from loguru import logger
from pathlib import Path
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from transformers.image_utils import load_image
import fitz
import html2text
import markdown
import tempfile
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
# --- Theme and CSS Definition ---
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8", c100="#D3E5F0", c200="#A8CCE1", c300="#7DB3D2",
c400="#529AC3", c500="#4682B4", c600="#3E72A0", c700="#36638C",
c800="#2E5378", c900="#264364", c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue, secondary_hue=secondary_hue, neutral_hue=neutral_hue,
text_size=text_size, font=font, font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
# --- Model and App Logic ---
pdf_suffixes = [".pdf"]
image_suffixes = [".png", ".jpeg", ".jpg"]
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Model 1: Logics-Parsing
MODEL_ID_1 = "Logics-MLLM/Logics-Parsing"
logger.info(f"Loading model 1: {MODEL_ID_1}")
processor_1 = AutoProcessor.from_pretrained(MODEL_ID_1, trust_remote_code=True)
model_1 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_1,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device).eval()
logger.info(f"Model '{MODEL_ID_1}' loaded successfully.")
# Model 2: Gliese-OCR-7B-Post1.0
MODEL_ID_2 = "prithivMLmods/Gliese-OCR-7B-Post1.0"
logger.info(f"Loading model 2: {MODEL_ID_2}")
processor_2 = AutoProcessor.from_pretrained(MODEL_ID_2, trust_remote_code=True)
model_2 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_2,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device).eval()
logger.info(f"Model '{MODEL_ID_2}' loaded successfully.")
# Model 3: olmOCR-7B-0825
MODEL_ID_3 = "allenai/olmOCR-7B-0825"
logger.info(f"Loading model 3: {MODEL_ID_3}")
processor_3 = AutoProcessor.from_pretrained(MODEL_ID_3, trust_remote_code=True)
model_3 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_3,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device).eval()
logger.info(f"Model '{MODEL_ID_3}' loaded successfully.")
@spaces.GPU
def parse_page(image: Image.Image, model_name: str) -> str:
if model_name == "Logics-Parsing":
current_processor, current_model = processor_1, model_1
elif model_name == "Gliese-OCR-7B-Post1.0":
current_processor, current_model = processor_2, model_2
elif model_name == "olmOCR-7B-0825":
current_processor, current_model = processor_3, model_3
else:
raise ValueError(f"Unknown model choice: {model_name}")
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Parse this document page into a clean, structured HTML representation. Preserve the logical structure with appropriate tags for content blocks such as paragraphs (<p>), headings (<h1>-<h6>), tables (<table>), figures (<figure>), formulas (<formula>), and others. Include category tags, and filter out irrelevant elements like headers and footers."}]}]
prompt_full = current_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = current_processor(text=prompt_full, images=[image.convert("RGB")], return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = current_model.generate(**inputs, max_new_tokens=2048, do_sample=False)
generated_ids = generated_ids[:, inputs['input_ids'].shape[1]:]
output_text = current_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return output_text
def convert_file_to_images(file_path: str, dpi: int = 200) -> List[Image.Image]:
images = []
file_ext = Path(file_path).suffix.lower()
if file_ext in image_suffixes:
images.append(Image.open(file_path).convert("RGB"))
return images
if file_ext not in pdf_suffixes:
raise ValueError(f"Unsupported file type: {file_ext}")
try:
pdf_document = fitz.open(file_path)
zoom = dpi / 72.0
mat = fitz.Matrix(zoom, zoom)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
images.append(Image.open(BytesIO(img_data)).convert("RGB"))
pdf_document.close()
except Exception as e:
logger.error(f"Failed to convert PDF using PyMuPDF: {e}")
raise
return images
def get_initial_state() -> Dict[str, Any]:
return {"pages": [], "total_pages": 0, "current_page_index": 0, "page_results": []}
def load_and_preview_file(file_path: Optional[str]) -> Tuple[Optional[Image.Image], str, Dict[str, Any]]:
state = get_initial_state()
if not file_path:
return None, '<div class="page-info">No file loaded</div>', state
try:
pages = convert_file_to_images(file_path)
if not pages:
return None, '<div class="page-info">Could not load file</div>', state
state["pages"] = pages
state["total_pages"] = len(pages)
page_info_html = f'<div class="page-info">Page 1 / {state["total_pages"]}</div>'
return pages[0], page_info_html, state
except Exception as e:
logger.error(f"Failed to load and preview file: {e}")
return None, '<div class="page-info">Failed to load preview</div>', state
async def process_all_pages(state: Dict[str, Any], model_choice: str, progress=gr.Progress(track_tqdm=True)):
if not state or not state["pages"]:
error_msg = "<h3>Please upload a file first.</h3>"
return error_msg, "", "", None, "Error: No file to process", state
logger.info(f'Processing {state["total_pages"]} pages with model: {model_choice}')
start_time = time.time()
try:
page_results = []
for i, page_img in progress.tqdm(enumerate(state["pages"]), desc="Processing Pages"):
html_result = parse_page(page_img, model_choice)
page_results.append({'raw_html': html_result})
state["page_results"] = page_results
full_html_content = "\n\n".join([f'<!-- Page {i+1} -->\n{res["raw_html"]}' for i, res in enumerate(page_results)])
full_markdown = html2text.html2text(full_html_content)
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') as f:
f.write(full_markdown)
md_path = f.name
parsing_time = time.time() - start_time
cost_time_str = f'Total processing time: {parsing_time:.2f}s'
current_page_results = get_page_outputs(state)
return *current_page_results, md_path, cost_time_str, state
except Exception as e:
logger.error(f"Parsing failed: {e}", exc_info=True)
error_html = f"<h3>An error occurred during processing:</h3><p>{str(e)}</p>"
return error_html, "", "", None, f"Error: {str(e)}", state
def navigate_page(direction: str, state: Dict[str, Any]):
if not state or not state["pages"]:
return None, '<div class="page-info">No file loaded</div>', *get_page_outputs(state), state
current_index = state["current_page_index"]
total_pages = state["total_pages"]
if direction == "prev":
new_index = max(0, current_index - 1)
elif direction == "next":
new_index = min(total_pages - 1, current_index + 1)
else:
new_index = current_index
state["current_page_index"] = new_index
image_preview = state["pages"][new_index]
page_info_html = f'<div class="page-info">Page {new_index + 1} / {total_pages}</div>'
page_outputs = get_page_outputs(state)
return image_preview, page_info_html, *page_outputs, state
def get_page_outputs(state: Dict[str, Any]) -> Tuple[str, str, str]:
if not state or not state.get("page_results"):
return "<h3>Process the document to see results.</h3>", "", ""
index = state["current_page_index"]
if index >= len(state["page_results"]):
return "<h3>Result not available for this page.</h3>", "", ""
result = state["page_results"][index]
raw_html = result['raw_html']
md_source = html2text.html2text(raw_html)
md_render = markdown.markdown(md_source, extensions=['fenced_code', 'tables'])
return md_render, md_source, raw_html
def clear_all():
return None, None, "<h3>Results will be displayed here after processing.</h3>", "", "", None, "", '<div class="page-info">No file loaded</div>', get_initial_state()
@click.command()
def main():
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; margin-bottom: 20px; }
.page-info { text-align: center; padding: 8px 16px; font-weight: bold; margin: 10px 0; }
"""
with gr.Blocks(theme=steel_blue_theme, css=css, title="Logics-Parsing Demo") as demo:
app_state = gr.State(value=get_initial_state())
gr.HTML("""
<div class="header-text">
<h1>π Multimodal: VLM Parsing</h1>
<p style="font-size: 1.1em;">An advanced Vision Language Model to parse documents and images into clean Markdown (html)</p>
<div style="display: flex; justify-content: center; gap: 20px; margin: 15px 0;">
<a href="https://huggingface.co/collections/prithivMLmods/mm-vlm-parsing-68e33e52bfb9ae60b50602dc" target="_blank" style="text-decoration: none; font-weight: 500;">π€ Model Info</a>
<a href="https://github.com/PRITHIVSAKTHIUR/VLM-Parsing" target="_blank" style="text-decoration: none; font-weight: 500;">π» GitHub</a>
<a href="https://huggingface.co/models?pipeline_tag=image-text-to-text&sort=trending" target="_blank" style="text-decoration: none; font-weight: 500;">π Multimodal VLMs</a>
</div>
</div>
""")
with gr.Row(elem_classes=["main-container"]):
with gr.Column(scale=1):
model_choice = gr.Dropdown(choices=["Logics-Parsing", "Gliese-OCR-7B-Post1.0", "olmOCR-7B-0825"], label="Select Model", value="Logics-Parsing")
file_input = gr.File(label="Upload PDF or Image", file_types=[".pdf", ".jpg", ".jpeg", ".png"], type="filepath")
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=320)
with gr.Row():
prev_page_btn = gr.Button("β Previous")
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
next_page_btn = gr.Button("Next βΆ")
with gr.Accordion("Download & Details", open=False):
output_file = gr.File(label='Download Markdown Result', interactive=False)
cost_time = gr.Textbox(label='Time Cost', interactive=False)
example_root = "examples"
if os.path.exists(example_root) and os.path.isdir(example_root):
example_files = [os.path.join(example_root, f) for f in os.listdir(example_root) if f.endswith(tuple(pdf_suffixes + image_suffixes))]
if example_files:
gr.Examples(examples=example_files, inputs=file_input, label="Examples")
process_btn = gr.Button("π Process Document", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear All", variant="secondary")
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("Markdown Source"):
md_source_output = gr.Code(language="markdown", label="Markdown Source")
with gr.Tab("Rendered Markdown"):
md_render_output = gr.Markdown(label='Markdown Rendering')
with gr.Tab("Generated HTML"):
raw_html_output = gr.Code(language="html", label="Generated HTML")
file_input.change(fn=load_and_preview_file, inputs=file_input, outputs=[image_preview, page_info, app_state], show_progress="full")
process_btn.click(fn=process_all_pages, inputs=[app_state, model_choice], outputs=[md_render_output, md_source_output, raw_html_output, output_file, cost_time, app_state], show_progress="full")
prev_page_btn.click(fn=lambda s: navigate_page("prev", s), inputs=app_state, outputs=[image_preview, page_info, md_render_output, md_source_output, raw_html_output, app_state])
next_page_btn.click(fn=lambda s: navigate_page("next", s), inputs=app_state, outputs=[image_preview, page_info, md_render_output, md_source_output, raw_html_output, app_state])
clear_btn.click(fn=clear_all, outputs=[file_input, image_preview, md_render_output, md_source_output, raw_html_output, output_file, cost_time, page_info, app_state])
demo.queue().launch(debug=True, show_error=True)
if __name__ == '__main__':
if not os.path.exists("examples"):
os.makedirs("examples")
logger.info("Created 'examples' directory. Please add some sample PDF/image files there.")
main() |