Spaces:
Running
on
Zero
Running
on
Zero
upload app (#1)
Browse files- upload app (ed8d4c13f05563a1f453d8fa7446f2e8b884d5f4)
- app.py +317 -0
- pre-requirements.txt +1 -0
- requirements.txt +38 -0
app.py
ADDED
|
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import hashlib
|
| 3 |
+
import spaces
|
| 4 |
+
import re
|
| 5 |
+
import time
|
| 6 |
+
import click
|
| 7 |
+
import gradio as gr
|
| 8 |
+
from io import BytesIO
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from loguru import logger
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import torch
|
| 13 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
| 14 |
+
from transformers.image_utils import load_image
|
| 15 |
+
import fitz
|
| 16 |
+
import html2text
|
| 17 |
+
import markdown
|
| 18 |
+
import tempfile
|
| 19 |
+
from typing import Optional, Tuple, Dict, Any, List
|
| 20 |
+
|
| 21 |
+
pdf_suffixes = [".pdf"]
|
| 22 |
+
image_suffixes = [".png", ".jpeg", ".jpg"]
|
| 23 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 24 |
+
|
| 25 |
+
logger.info(f"Using device: {device}")
|
| 26 |
+
|
| 27 |
+
# Model 1: Logics-Parsing
|
| 28 |
+
MODEL_ID_1 = "Logics-MLLM/Logics-Parsing"
|
| 29 |
+
logger.info(f"Loading model 1: {MODEL_ID_1}")
|
| 30 |
+
processor_1 = AutoProcessor.from_pretrained(MODEL_ID_1, trust_remote_code=True)
|
| 31 |
+
model_1 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 32 |
+
MODEL_ID_1,
|
| 33 |
+
trust_remote_code=True,
|
| 34 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 35 |
+
).to(device).eval()
|
| 36 |
+
logger.info(f"Model '{MODEL_ID_1}' loaded successfully.")
|
| 37 |
+
|
| 38 |
+
# Model 2: Gliese-OCR-7B-Post1.0
|
| 39 |
+
MODEL_ID_2 = "prithivMLmods/Gliese-OCR-7B-Post1.0"
|
| 40 |
+
logger.info(f"Loading model 2: {MODEL_ID_2}")
|
| 41 |
+
processor_2 = AutoProcessor.from_pretrained(MODEL_ID_2, trust_remote_code=True)
|
| 42 |
+
model_2 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 43 |
+
MODEL_ID_2,
|
| 44 |
+
trust_remote_code=True,
|
| 45 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
| 46 |
+
).to(device).eval()
|
| 47 |
+
logger.info(f"Model '{MODEL_ID_2}' loaded successfully.")
|
| 48 |
+
|
| 49 |
+
@spaces.GPU
|
| 50 |
+
def parse_page(image: Image.Image, model_name: str) -> str:
|
| 51 |
+
"""
|
| 52 |
+
Parses a single document page image using the selected model.
|
| 53 |
+
"""
|
| 54 |
+
if model_name == "Logics-Parsing":
|
| 55 |
+
current_processor, current_model = processor_1, model_1
|
| 56 |
+
elif model_name == "Gliese-OCR-7B-Post1.0":
|
| 57 |
+
current_processor, current_model = processor_2, model_2
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError(f"Unknown model choice: {model_name}")
|
| 60 |
+
|
| 61 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": "Parse this document page into a clean, structured HTML representation. Preserve the logical structure with appropriate tags for content blocks such as paragraphs (<p>), headings (<h1>-<h6>), tables (<table>), figures (<figure>), formulas (<formula>), and others. Include category tags, and filter out irrelevant elements like headers and footers."}]}]
|
| 62 |
+
prompt_full = current_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 63 |
+
inputs = current_processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
|
| 64 |
+
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
generated_ids = current_model.generate(**inputs, max_new_tokens=2048, temperature=0.1, top_p=0.9, do_sample=True, repetition_penalty=1.05)
|
| 67 |
+
|
| 68 |
+
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
| 69 |
+
output_text = current_processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 70 |
+
return output_text
|
| 71 |
+
|
| 72 |
+
def convert_file_to_images(file_path: str, dpi: int = 200) -> List[Image.Image]:
|
| 73 |
+
"""
|
| 74 |
+
Converts a PDF or image file into a list of PIL Images.
|
| 75 |
+
"""
|
| 76 |
+
images = []
|
| 77 |
+
file_ext = Path(file_path).suffix.lower()
|
| 78 |
+
|
| 79 |
+
if file_ext in image_suffixes:
|
| 80 |
+
images.append(Image.open(file_path).convert("RGB"))
|
| 81 |
+
return images
|
| 82 |
+
|
| 83 |
+
if file_ext not in pdf_suffixes:
|
| 84 |
+
raise ValueError(f"Unsupported file type: {file_ext}")
|
| 85 |
+
|
| 86 |
+
try:
|
| 87 |
+
pdf_document = fitz.open(file_path)
|
| 88 |
+
zoom = dpi / 72.0
|
| 89 |
+
mat = fitz.Matrix(zoom, zoom)
|
| 90 |
+
for page_num in range(len(pdf_document)):
|
| 91 |
+
page = pdf_document.load_page(page_num)
|
| 92 |
+
pix = page.get_pixmap(matrix=mat)
|
| 93 |
+
img_data = pix.tobytes("png")
|
| 94 |
+
images.append(Image.open(BytesIO(img_data)))
|
| 95 |
+
pdf_document.close()
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.error(f"Failed to convert PDF using PyMuPDF: {e}")
|
| 98 |
+
raise
|
| 99 |
+
return images
|
| 100 |
+
|
| 101 |
+
def get_initial_state() -> Dict[str, Any]:
|
| 102 |
+
"""Returns the default initial state for the application."""
|
| 103 |
+
return {"pages": [], "total_pages": 0, "current_page_index": 0, "page_results": []}
|
| 104 |
+
|
| 105 |
+
def load_and_preview_file(file_path: Optional[str]) -> Tuple[Optional[Image.Image], str, Dict[str, Any]]:
|
| 106 |
+
"""
|
| 107 |
+
Loads a file, converts all pages to images, and stores them in the state.
|
| 108 |
+
"""
|
| 109 |
+
state = get_initial_state()
|
| 110 |
+
if not file_path:
|
| 111 |
+
return None, '<div class="page-info">No file loaded</div>', state
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
pages = convert_file_to_images(file_path)
|
| 115 |
+
if not pages:
|
| 116 |
+
return None, '<div class="page-info">Could not load file</div>', state
|
| 117 |
+
|
| 118 |
+
state["pages"] = pages
|
| 119 |
+
state["total_pages"] = len(pages)
|
| 120 |
+
page_info_html = f'<div class="page-info">Page 1 / {state["total_pages"]}</div>'
|
| 121 |
+
return pages[0], page_info_html, state
|
| 122 |
+
except Exception as e:
|
| 123 |
+
logger.error(f"Failed to load and preview file: {e}")
|
| 124 |
+
return None, '<div class="page-info">Failed to load preview</div>', state
|
| 125 |
+
|
| 126 |
+
async def process_all_pages(state: Dict[str, Any], model_choice: str):
|
| 127 |
+
"""
|
| 128 |
+
Processes all pages stored in the state and updates the state with results.
|
| 129 |
+
"""
|
| 130 |
+
if not state or not state["pages"]:
|
| 131 |
+
error_msg = "<h3>Please upload a file first.</h3>"
|
| 132 |
+
return error_msg, "", "", None, "Error: No file to process", state
|
| 133 |
+
|
| 134 |
+
logger.info(f'Processing {state["total_pages"]} pages with model: {model_choice}')
|
| 135 |
+
start_time = time.time()
|
| 136 |
+
|
| 137 |
+
try:
|
| 138 |
+
page_results = []
|
| 139 |
+
for i, page_img in enumerate(state["pages"]):
|
| 140 |
+
logger.info(f"Parsing page {i + 1}/{state['total_pages']}")
|
| 141 |
+
html_result = parse_page(page_img, model_choice)
|
| 142 |
+
page_results.append({'raw_html': html_result})
|
| 143 |
+
|
| 144 |
+
state["page_results"] = page_results
|
| 145 |
+
|
| 146 |
+
# Create a single markdown file for download with all content
|
| 147 |
+
full_html_content = "\n\n".join([f'<!-- Page {i+1} -->\n{res["raw_html"]}' for i, res in enumerate(page_results)])
|
| 148 |
+
full_markdown = html2text.html2text(full_html_content)
|
| 149 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') as f:
|
| 150 |
+
f.write(full_markdown)
|
| 151 |
+
md_path = f.name
|
| 152 |
+
|
| 153 |
+
parsing_time = time.time() - start_time
|
| 154 |
+
cost_time_str = f'Total processing time: {parsing_time:.2f}s'
|
| 155 |
+
|
| 156 |
+
# Display the results for the current page
|
| 157 |
+
current_page_results = get_page_outputs(state)
|
| 158 |
+
|
| 159 |
+
return *current_page_results, md_path, cost_time_str, state
|
| 160 |
+
|
| 161 |
+
except Exception as e:
|
| 162 |
+
logger.error(f"Parsing failed: {e}", exc_info=True)
|
| 163 |
+
error_html = f"<h3>An error occurred during processing:</h3><p>{str(e)}</p>"
|
| 164 |
+
return error_html, "", "", None, f"Error: {str(e)}", state
|
| 165 |
+
|
| 166 |
+
def navigate_page(direction: str, state: Dict[str, Any]):
|
| 167 |
+
"""
|
| 168 |
+
Navigates to the previous or next page and updates the UI accordingly.
|
| 169 |
+
"""
|
| 170 |
+
if not state or not state["pages"]:
|
| 171 |
+
return None, '<div class="page-info">No file loaded</div>', *get_page_outputs(state), state
|
| 172 |
+
|
| 173 |
+
current_index = state["current_page_index"]
|
| 174 |
+
total_pages = state["total_pages"]
|
| 175 |
+
|
| 176 |
+
if direction == "prev":
|
| 177 |
+
new_index = max(0, current_index - 1)
|
| 178 |
+
elif direction == "next":
|
| 179 |
+
new_index = min(total_pages - 1, current_index + 1)
|
| 180 |
+
else:
|
| 181 |
+
new_index = current_index
|
| 182 |
+
|
| 183 |
+
state["current_page_index"] = new_index
|
| 184 |
+
|
| 185 |
+
image_preview = state["pages"][new_index]
|
| 186 |
+
page_info_html = f'<div class="page-info">Page {new_index + 1} / {total_pages}</div>'
|
| 187 |
+
|
| 188 |
+
page_outputs = get_page_outputs(state)
|
| 189 |
+
|
| 190 |
+
return image_preview, page_info_html, *page_outputs, state
|
| 191 |
+
|
| 192 |
+
def get_page_outputs(state: Dict[str, Any]) -> Tuple[str, str, str]:
|
| 193 |
+
"""Helper to get displayable outputs for the current page."""
|
| 194 |
+
if not state or not state.get("page_results"):
|
| 195 |
+
return "<h3>Process the document to see results.</h3>", "", ""
|
| 196 |
+
|
| 197 |
+
index = state["current_page_index"]
|
| 198 |
+
result = state["page_results"][index]
|
| 199 |
+
raw_html = result['raw_html']
|
| 200 |
+
|
| 201 |
+
mmd_source = html2text.html2text(raw_html)
|
| 202 |
+
mmd_render = markdown.markdown(mmd_source, extensions=['fenced_code', 'tables'])
|
| 203 |
+
|
| 204 |
+
return mmd_render, mmd_source, raw_html
|
| 205 |
+
|
| 206 |
+
def clear_all():
|
| 207 |
+
"""Clears all UI components and resets the state."""
|
| 208 |
+
return (
|
| 209 |
+
None,
|
| 210 |
+
None,
|
| 211 |
+
"<h3>Results will be displayed here after processing.</h3>",
|
| 212 |
+
"",
|
| 213 |
+
"",
|
| 214 |
+
None,
|
| 215 |
+
"",
|
| 216 |
+
'<div class="page-info">No file loaded</div>',
|
| 217 |
+
get_initial_state()
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
@click.command()
|
| 221 |
+
def main():
|
| 222 |
+
"""
|
| 223 |
+
Sets up and launches the Gradio user interface for the Logics-Parsing app.
|
| 224 |
+
"""
|
| 225 |
+
css = """
|
| 226 |
+
.main-container { max-width: 1400px; margin: 0 auto; }
|
| 227 |
+
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
|
| 228 |
+
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
|
| 229 |
+
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
|
| 230 |
+
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
|
| 231 |
+
"""
|
| 232 |
+
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Logics-Parsing Demo") as demo:
|
| 233 |
+
app_state = gr.State(value=get_initial_state())
|
| 234 |
+
|
| 235 |
+
gr.HTML("""
|
| 236 |
+
<div class="header-text">
|
| 237 |
+
<h1>📄 Logics-Parsing: Document Parsing VLM</h1>
|
| 238 |
+
<p style="font-size: 1.1em; color: #6b7280;">An advanced Vision Language Model to parse documents and images into clean HTML and Markdown.</p>
|
| 239 |
+
<div style="display: flex; justify-content: center; gap: 20px; margin: 15px 0;">
|
| 240 |
+
<a href="https://huggingface.co/Logics-MLLM/Logics-Parsing" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">🤗 Model Page</a>
|
| 241 |
+
<a href="https://github.com/alibaba/Logics-Parsing" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">💻 GitHub</a>
|
| 242 |
+
<a href="https://arxiv.org/abs/2509.19760" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">📝 Arxiv Paper</a>
|
| 243 |
+
</div>
|
| 244 |
+
</div>
|
| 245 |
+
""")
|
| 246 |
+
|
| 247 |
+
with gr.Row(elem_classes=["main-container"]):
|
| 248 |
+
with gr.Column(scale=1):
|
| 249 |
+
model_choice = gr.Dropdown(choices=["Logics-Parsing", "Gliese-OCR-7B-Post1.0"], label="Select Model⚡️", value="Logics-Parsing")
|
| 250 |
+
file_input = gr.File(label="Upload PDF or Image", file_types=[".pdf", ".jpg", ".jpeg", ".png"], type="filepath")
|
| 251 |
+
image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=280)
|
| 252 |
+
|
| 253 |
+
with gr.Row():
|
| 254 |
+
prev_page_btn = gr.Button("◀ Previous", size="md")
|
| 255 |
+
page_info = gr.HTML('<div class="page-info">No file loaded</div>')
|
| 256 |
+
next_page_btn = gr.Button("Next ▶", size="md")
|
| 257 |
+
|
| 258 |
+
example_root = "examples"
|
| 259 |
+
if os.path.exists(example_root) and os.path.isdir(example_root):
|
| 260 |
+
example_files = [os.path.join(example_root, f) for f in os.listdir(example_root) if f.endswith(tuple(pdf_suffixes + image_suffixes))]
|
| 261 |
+
if example_files:
|
| 262 |
+
with gr.Accordion("Open Examples⚙️", open=False):
|
| 263 |
+
gr.Examples(examples=example_files, inputs=file_input, examples_per_page=10)
|
| 264 |
+
|
| 265 |
+
with gr.Accordion("Download Details🕧", open=False):
|
| 266 |
+
output_file = gr.File(label='Download Markdown Result', interactive=False)
|
| 267 |
+
cost_time = gr.Text(label='Time Cost', interactive=False)
|
| 268 |
+
|
| 269 |
+
process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg")
|
| 270 |
+
clear_btn = gr.Button("🗑️ Clear All", variant="secondary")
|
| 271 |
+
|
| 272 |
+
with gr.Column(scale=2):
|
| 273 |
+
with gr.Tabs():
|
| 274 |
+
with gr.Tab("Markdown Rendering"):
|
| 275 |
+
mmd_html = gr.TextArea(lines=27, label='Markdown Rendering', show_copy_button=True, interactive=True)
|
| 276 |
+
with gr.Tab("Markdown Source"):
|
| 277 |
+
mmd = gr.TextArea(lines=27, show_copy_button=True, label="Markdown Source", interactive=True)
|
| 278 |
+
with gr.Tab("Generated HTML"):
|
| 279 |
+
raw_html = gr.TextArea(lines=27, show_copy_button=True, label="Generated HTML")
|
| 280 |
+
|
| 281 |
+
# --- Event Handlers ---
|
| 282 |
+
file_input.change(
|
| 283 |
+
fn=load_and_preview_file,
|
| 284 |
+
inputs=file_input,
|
| 285 |
+
outputs=[image_preview, page_info, app_state],
|
| 286 |
+
show_progress="full")
|
| 287 |
+
|
| 288 |
+
process_btn.click(
|
| 289 |
+
fn=process_all_pages,
|
| 290 |
+
inputs=[app_state, model_choice],
|
| 291 |
+
outputs=[mmd_html, mmd, raw_html,
|
| 292 |
+
output_file, cost_time, app_state],
|
| 293 |
+
concurrency_limit=15,
|
| 294 |
+
show_progress="full")
|
| 295 |
+
|
| 296 |
+
prev_page_btn.click(
|
| 297 |
+
fn=lambda s: navigate_page("prev", s),
|
| 298 |
+
inputs=app_state, outputs=[image_preview,
|
| 299 |
+
page_info, mmd_html, mmd, raw_html, app_state])
|
| 300 |
+
|
| 301 |
+
next_page_btn.click(
|
| 302 |
+
fn=lambda s: navigate_page("next", s),
|
| 303 |
+
inputs=app_state, outputs=[image_preview,
|
| 304 |
+
page_info, mmd_html, mmd, raw_html, app_state])
|
| 305 |
+
|
| 306 |
+
clear_btn.click(
|
| 307 |
+
fn=clear_all,
|
| 308 |
+
outputs=[file_input, image_preview, mmd_html, mmd, raw_html,
|
| 309 |
+
output_file, cost_time, page_info, app_state])
|
| 310 |
+
|
| 311 |
+
demo.queue().launch(debug=True, show_error=True)
|
| 312 |
+
|
| 313 |
+
if __name__ == '__main__':
|
| 314 |
+
if not os.path.exists("examples"):
|
| 315 |
+
os.makedirs("examples")
|
| 316 |
+
logger.info("Created 'examples' directory. Please add some sample PDF/image files there.")
|
| 317 |
+
main()
|
pre-requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pip>=23.0.0
|
requirements.txt
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/accelerate.git
|
| 2 |
+
git+https://github.com/huggingface/peft.git
|
| 3 |
+
transformers-stream-generator
|
| 4 |
+
gradio_pdf==0.0.22
|
| 5 |
+
huggingface_hub
|
| 6 |
+
albumentations
|
| 7 |
+
beautifulsoup4
|
| 8 |
+
qwen-vl-utils
|
| 9 |
+
pyvips-binary
|
| 10 |
+
sentencepiece
|
| 11 |
+
opencv-python
|
| 12 |
+
transformers
|
| 13 |
+
docling-core
|
| 14 |
+
python-docx
|
| 15 |
+
torchvision
|
| 16 |
+
matplotlib
|
| 17 |
+
pdf2image
|
| 18 |
+
num2words
|
| 19 |
+
reportlab
|
| 20 |
+
html2text
|
| 21 |
+
xformers
|
| 22 |
+
markdown
|
| 23 |
+
requests
|
| 24 |
+
pymupdf
|
| 25 |
+
loguru
|
| 26 |
+
hf_xet
|
| 27 |
+
spaces
|
| 28 |
+
pyvips
|
| 29 |
+
pillow
|
| 30 |
+
gradio
|
| 31 |
+
einops
|
| 32 |
+
httpx
|
| 33 |
+
click
|
| 34 |
+
torch
|
| 35 |
+
oss2
|
| 36 |
+
fpdf
|
| 37 |
+
timm
|
| 38 |
+
av
|