import os import hashlib import spaces import re import time import click import gradio as gr from io import BytesIO from PIL import Image from loguru import logger from pathlib import Path import torch from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration from transformers.image_utils import load_image import fitz import html2text import markdown import tempfile from typing import Optional, Tuple, Dict, Any, List pdf_suffixes = [".pdf"] image_suffixes = [".png", ".jpeg", ".jpg"] device = "cuda" if torch.cuda.is_available() else "cpu" logger.info(f"Using device: {device}") # Model 1: Logics-Parsing MODEL_ID_1 = "Logics-MLLM/Logics-Parsing" logger.info(f"Loading model 1: {MODEL_ID_1}") processor_1 = AutoProcessor.from_pretrained(MODEL_ID_1, trust_remote_code=True) model_1 = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_1, trust_remote_code=True, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device).eval() logger.info(f"Model '{MODEL_ID_1}' loaded successfully.") # Model 2: Gliese-OCR-7B-Post1.0 MODEL_ID_2 = "prithivMLmods/Gliese-OCR-7B-Post1.0" logger.info(f"Loading model 2: {MODEL_ID_2}") processor_2 = AutoProcessor.from_pretrained(MODEL_ID_2, trust_remote_code=True) model_2 = Qwen2_5_VLForConditionalGeneration.from_pretrained( MODEL_ID_2, trust_remote_code=True, torch_dtype=torch.float16 if device == "cuda" else torch.float32 ).to(device).eval() logger.info(f"Model '{MODEL_ID_2}' loaded successfully.") @spaces.GPU def parse_page(image: Image.Image, model_name: str) -> str: """ Parses a single document page image using the selected model. """ if model_name == "Logics-Parsing": current_processor, current_model = processor_1, model_1 elif model_name == "Gliese-OCR-7B-Post1.0": current_processor, current_model = processor_2, model_2 else: raise ValueError(f"Unknown model choice: {model_name}") messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": "Parse this document page into a clean, structured HTML representation. Preserve the logical structure with appropriate tags for content blocks such as paragraphs (

), headings (

-

), tables (), figures (
), formulas (), and others. Include category tags, and filter out irrelevant elements like headers and footers."}]}] prompt_full = current_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = current_processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device) with torch.no_grad(): generated_ids = current_model.generate(**inputs, max_new_tokens=2048, temperature=0.1, top_p=0.9, do_sample=True, repetition_penalty=1.05) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] output_text = current_processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] return output_text def convert_file_to_images(file_path: str, dpi: int = 200) -> List[Image.Image]: """ Converts a PDF or image file into a list of PIL Images. """ images = [] file_ext = Path(file_path).suffix.lower() if file_ext in image_suffixes: images.append(Image.open(file_path).convert("RGB")) return images if file_ext not in pdf_suffixes: raise ValueError(f"Unsupported file type: {file_ext}") try: pdf_document = fitz.open(file_path) zoom = dpi / 72.0 mat = fitz.Matrix(zoom, zoom) for page_num in range(len(pdf_document)): page = pdf_document.load_page(page_num) pix = page.get_pixmap(matrix=mat) img_data = pix.tobytes("png") images.append(Image.open(BytesIO(img_data))) pdf_document.close() except Exception as e: logger.error(f"Failed to convert PDF using PyMuPDF: {e}") raise return images def get_initial_state() -> Dict[str, Any]: """Returns the default initial state for the application.""" return {"pages": [], "total_pages": 0, "current_page_index": 0, "page_results": []} def load_and_preview_file(file_path: Optional[str]) -> Tuple[Optional[Image.Image], str, Dict[str, Any]]: """ Loads a file, converts all pages to images, and stores them in the state. """ state = get_initial_state() if not file_path: return None, '
No file loaded
', state try: pages = convert_file_to_images(file_path) if not pages: return None, '
Could not load file
', state state["pages"] = pages state["total_pages"] = len(pages) page_info_html = f'
Page 1 / {state["total_pages"]}
' return pages[0], page_info_html, state except Exception as e: logger.error(f"Failed to load and preview file: {e}") return None, '
Failed to load preview
', state async def process_all_pages(state: Dict[str, Any], model_choice: str): """ Processes all pages stored in the state and updates the state with results. """ if not state or not state["pages"]: error_msg = "

Please upload a file first.

" return error_msg, "", "", None, "Error: No file to process", state logger.info(f'Processing {state["total_pages"]} pages with model: {model_choice}') start_time = time.time() try: page_results = [] for i, page_img in enumerate(state["pages"]): logger.info(f"Parsing page {i + 1}/{state['total_pages']}") html_result = parse_page(page_img, model_choice) page_results.append({'raw_html': html_result}) state["page_results"] = page_results # Create a single markdown file for download with all content full_html_content = "\n\n".join([f'\n{res["raw_html"]}' for i, res in enumerate(page_results)]) full_markdown = html2text.html2text(full_html_content) with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') as f: f.write(full_markdown) md_path = f.name parsing_time = time.time() - start_time cost_time_str = f'Total processing time: {parsing_time:.2f}s' # Display the results for the current page current_page_results = get_page_outputs(state) return *current_page_results, md_path, cost_time_str, state except Exception as e: logger.error(f"Parsing failed: {e}", exc_info=True) error_html = f"

An error occurred during processing:

{str(e)}

" return error_html, "", "", None, f"Error: {str(e)}", state def navigate_page(direction: str, state: Dict[str, Any]): """ Navigates to the previous or next page and updates the UI accordingly. """ if not state or not state["pages"]: return None, '
No file loaded
', *get_page_outputs(state), state current_index = state["current_page_index"] total_pages = state["total_pages"] if direction == "prev": new_index = max(0, current_index - 1) elif direction == "next": new_index = min(total_pages - 1, current_index + 1) else: new_index = current_index state["current_page_index"] = new_index image_preview = state["pages"][new_index] page_info_html = f'
Page {new_index + 1} / {total_pages}
' page_outputs = get_page_outputs(state) return image_preview, page_info_html, *page_outputs, state def get_page_outputs(state: Dict[str, Any]) -> Tuple[str, str, str]: """Helper to get displayable outputs for the current page.""" if not state or not state.get("page_results"): return "

Process the document to see results.

", "", "" index = state["current_page_index"] result = state["page_results"][index] raw_html = result['raw_html'] mmd_source = html2text.html2text(raw_html) mmd_render = markdown.markdown(mmd_source, extensions=['fenced_code', 'tables']) return mmd_render, mmd_source, raw_html def clear_all(): """Clears all UI components and resets the state.""" return ( None, None, "

Results will be displayed here after processing.

", "", "", None, "", '
No file loaded
', get_initial_state() ) @click.command() def main(): """ Sets up and launches the Gradio user interface for the Logics-Parsing app. """ css = """ .main-container { max-width: 1400px; margin: 0 auto; } .header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; } .process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;} .process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; } .page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; } """ with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Logics-Parsing Demo") as demo: app_state = gr.State(value=get_initial_state()) gr.HTML("""

📄 Logics-Parsing: Document Parsing VLM

An advanced Vision Language Model to parse documents and images into clean HTML and Markdown.

🤗 Model Page 💻 GitHub 📝 Arxiv Paper
""") with gr.Row(elem_classes=["main-container"]): with gr.Column(scale=1): model_choice = gr.Dropdown(choices=["Logics-Parsing", "Gliese-OCR-7B-Post1.0"], label="Select Model⚡️", value="Logics-Parsing") file_input = gr.File(label="Upload PDF or Image", file_types=[".pdf", ".jpg", ".jpeg", ".png"], type="filepath") image_preview = gr.Image(label="Preview", type="pil", interactive=False, height=280) with gr.Row(): prev_page_btn = gr.Button("◀ Previous", size="md") page_info = gr.HTML('
No file loaded
') next_page_btn = gr.Button("Next ▶", size="md") example_root = "examples" if os.path.exists(example_root) and os.path.isdir(example_root): example_files = [os.path.join(example_root, f) for f in os.listdir(example_root) if f.endswith(tuple(pdf_suffixes + image_suffixes))] if example_files: with gr.Accordion("Open Examples⚙️", open=False): gr.Examples(examples=example_files, inputs=file_input, examples_per_page=10) with gr.Accordion("Download Details🕧", open=False): output_file = gr.File(label='Download Markdown Result', interactive=False) cost_time = gr.Text(label='Time Cost', interactive=False) process_btn = gr.Button("🚀 Process Document", variant="primary", elem_classes=["process-button"], size="lg") clear_btn = gr.Button("🗑️ Clear All", variant="secondary") with gr.Column(scale=2): with gr.Tabs(): with gr.Tab("Markdown Rendering"): mmd_html = gr.TextArea(lines=27, label='Markdown Rendering', show_copy_button=True, interactive=True) with gr.Tab("Markdown Source"): mmd = gr.TextArea(lines=27, show_copy_button=True, label="Markdown Source", interactive=True) with gr.Tab("Generated HTML"): raw_html = gr.TextArea(lines=27, show_copy_button=True, label="Generated HTML") # --- Event Handlers --- file_input.change( fn=load_and_preview_file, inputs=file_input, outputs=[image_preview, page_info, app_state], show_progress="full") process_btn.click( fn=process_all_pages, inputs=[app_state, model_choice], outputs=[mmd_html, mmd, raw_html, output_file, cost_time, app_state], concurrency_limit=15, show_progress="full") prev_page_btn.click( fn=lambda s: navigate_page("prev", s), inputs=app_state, outputs=[image_preview, page_info, mmd_html, mmd, raw_html, app_state]) next_page_btn.click( fn=lambda s: navigate_page("next", s), inputs=app_state, outputs=[image_preview, page_info, mmd_html, mmd, raw_html, app_state]) clear_btn.click( fn=clear_all, outputs=[file_input, image_preview, mmd_html, mmd, raw_html, output_file, cost_time, page_info, app_state]) demo.queue().launch(debug=True, show_error=True) if __name__ == '__main__': if not os.path.exists("examples"): os.makedirs("examples") logger.info("Created 'examples' directory. Please add some sample PDF/image files there.") main()