import os
import hashlib
import spaces
import re
import time
import click
import gradio as gr
from io import BytesIO
from PIL import Image
from loguru import logger
from pathlib import Path
import torch
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
from transformers.image_utils import load_image
import fitz
import html2text
import markdown
import tempfile
from typing import Optional, Tuple, Dict, Any, List
pdf_suffixes = [".pdf"]
image_suffixes = [".png", ".jpeg", ".jpg"]
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# Model 1: Logics-Parsing
MODEL_ID_1 = "Logics-MLLM/Logics-Parsing"
logger.info(f"Loading model 1: {MODEL_ID_1}")
processor_1 = AutoProcessor.from_pretrained(MODEL_ID_1, trust_remote_code=True)
model_1 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_1,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device).eval()
logger.info(f"Model '{MODEL_ID_1}' loaded successfully.")
# Model 2: Gliese-OCR-7B-Post1.0
MODEL_ID_2 = "prithivMLmods/Gliese-OCR-7B-Post1.0"
logger.info(f"Loading model 2: {MODEL_ID_2}")
processor_2 = AutoProcessor.from_pretrained(MODEL_ID_2, trust_remote_code=True)
model_2 = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_2,
trust_remote_code=True,
torch_dtype=torch.float16 if device == "cuda" else torch.float32
).to(device).eval()
logger.info(f"Model '{MODEL_ID_2}' loaded successfully.")
@spaces.GPU
def parse_page(image: Image.Image, model_name: str) -> str:
"""
Parses a single document page image using the selected model.
"""
if model_name == "Logics-Parsing":
current_processor, current_model = processor_1, model_1
elif model_name == "Gliese-OCR-7B-Post1.0":
current_processor, current_model = processor_2, model_2
else:
raise ValueError(f"Unknown model choice: {model_name}")
messages = [{"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": "Parse this document page into a clean, structured HTML representation. Preserve the logical structure with appropriate tags for content blocks such as paragraphs (
), headings (
-
), tables (
), figures (), formulas (), and others. Include category tags, and filter out irrelevant elements like headers and footers."}]}]
prompt_full = current_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = current_processor(text=[prompt_full], images=[image], return_tensors="pt", padding=True).to(device)
with torch.no_grad():
generated_ids = current_model.generate(**inputs, max_new_tokens=2048, temperature=0.1, top_p=0.9, do_sample=True, repetition_penalty=1.05)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = current_processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
return output_text
def convert_file_to_images(file_path: str, dpi: int = 200) -> List[Image.Image]:
"""
Converts a PDF or image file into a list of PIL Images.
"""
images = []
file_ext = Path(file_path).suffix.lower()
if file_ext in image_suffixes:
images.append(Image.open(file_path).convert("RGB"))
return images
if file_ext not in pdf_suffixes:
raise ValueError(f"Unsupported file type: {file_ext}")
try:
pdf_document = fitz.open(file_path)
zoom = dpi / 72.0
mat = fitz.Matrix(zoom, zoom)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
pix = page.get_pixmap(matrix=mat)
img_data = pix.tobytes("png")
images.append(Image.open(BytesIO(img_data)))
pdf_document.close()
except Exception as e:
logger.error(f"Failed to convert PDF using PyMuPDF: {e}")
raise
return images
def get_initial_state() -> Dict[str, Any]:
"""Returns the default initial state for the application."""
return {"pages": [], "total_pages": 0, "current_page_index": 0, "page_results": []}
def load_and_preview_file(file_path: Optional[str]) -> Tuple[Optional[Image.Image], str, Dict[str, Any]]:
"""
Loads a file, converts all pages to images, and stores them in the state.
"""
state = get_initial_state()
if not file_path:
return None, '
No file loaded
', state
try:
pages = convert_file_to_images(file_path)
if not pages:
return None, '
Could not load file
', state
state["pages"] = pages
state["total_pages"] = len(pages)
page_info_html = f'
Page 1 / {state["total_pages"]}
'
return pages[0], page_info_html, state
except Exception as e:
logger.error(f"Failed to load and preview file: {e}")
return None, '
Failed to load preview
', state
async def process_all_pages(state: Dict[str, Any], model_choice: str):
"""
Processes all pages stored in the state and updates the state with results.
"""
if not state or not state["pages"]:
error_msg = "
Please upload a file first.
"
return error_msg, "", "", None, "Error: No file to process", state
logger.info(f'Processing {state["total_pages"]} pages with model: {model_choice}')
start_time = time.time()
try:
page_results = []
for i, page_img in enumerate(state["pages"]):
logger.info(f"Parsing page {i + 1}/{state['total_pages']}")
html_result = parse_page(page_img, model_choice)
page_results.append({'raw_html': html_result})
state["page_results"] = page_results
# Create a single markdown file for download with all content
full_html_content = "\n\n".join([f'\n{res["raw_html"]}' for i, res in enumerate(page_results)])
full_markdown = html2text.html2text(full_html_content)
with tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') as f:
f.write(full_markdown)
md_path = f.name
parsing_time = time.time() - start_time
cost_time_str = f'Total processing time: {parsing_time:.2f}s'
# Display the results for the current page
current_page_results = get_page_outputs(state)
return *current_page_results, md_path, cost_time_str, state
except Exception as e:
logger.error(f"Parsing failed: {e}", exc_info=True)
error_html = f"
An error occurred during processing:
{str(e)}
"
return error_html, "", "", None, f"Error: {str(e)}", state
def navigate_page(direction: str, state: Dict[str, Any]):
"""
Navigates to the previous or next page and updates the UI accordingly.
"""
if not state or not state["pages"]:
return None, '
No file loaded
', *get_page_outputs(state), state
current_index = state["current_page_index"]
total_pages = state["total_pages"]
if direction == "prev":
new_index = max(0, current_index - 1)
elif direction == "next":
new_index = min(total_pages - 1, current_index + 1)
else:
new_index = current_index
state["current_page_index"] = new_index
image_preview = state["pages"][new_index]
page_info_html = f'
Page {new_index + 1} / {total_pages}
'
page_outputs = get_page_outputs(state)
return image_preview, page_info_html, *page_outputs, state
def get_page_outputs(state: Dict[str, Any]) -> Tuple[str, str, str]:
"""Helper to get displayable outputs for the current page."""
if not state or not state.get("page_results"):
return "
Process the document to see results.
", "", ""
index = state["current_page_index"]
result = state["page_results"][index]
raw_html = result['raw_html']
mmd_source = html2text.html2text(raw_html)
mmd_render = markdown.markdown(mmd_source, extensions=['fenced_code', 'tables'])
return mmd_render, mmd_source, raw_html
def clear_all():
"""Clears all UI components and resets the state."""
return (
None,
None,
"
Results will be displayed here after processing.
",
"",
"",
None,
"",
'
No file loaded
',
get_initial_state()
)
@click.command()
def main():
"""
Sets up and launches the Gradio user interface for the Logics-Parsing app.
"""
css = """
.main-container { max-width: 1400px; margin: 0 auto; }
.header-text { text-align: center; color: #2c3e50; margin-bottom: 20px; }
.process-button { border: none !important; color: white !important; font-weight: bold !important; background-color: blue !important;}
.process-button:hover { background-color: darkblue !important; transform: translateY(-2px) !important; box-shadow: 0 4px 8px rgba(0,0,0,0.2) !important; }
.page-info { text-align: center; padding: 8px 16px; border-radius: 20px; font-weight: bold; margin: 10px 0; }
"""
with gr.Blocks(theme="bethecloud/storj_theme", css=css, title="Logics-Parsing Demo") as demo:
app_state = gr.State(value=get_initial_state())
gr.HTML("""
📄 Logics-Parsing: Document Parsing VLM
An advanced Vision Language Model to parse documents and images into clean HTML and Markdown.