| """ | |
| "XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024." | |
| https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/ | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class InterpolateSparse2d(nn.Module): | |
| """ Efficiently interpolate tensor at given sparse 2D positions. """ | |
| def __init__(self, mode = 'bicubic', align_corners = False): | |
| super().__init__() | |
| self.mode = mode | |
| self.align_corners = align_corners | |
| def normgrid(self, x, H, W): | |
| """ Normalize coords to [-1,1]. """ | |
| return 2. * (x/(torch.tensor([W-1, H-1], device = x.device, dtype = x.dtype))) - 1. | |
| def forward(self, x, pos, H, W): | |
| """ | |
| Input | |
| x: [B, C, H, W] feature tensor | |
| pos: [B, N, 2] tensor of positions | |
| H, W: int, original resolution of input 2d positions -- used in normalization [-1,1] | |
| Returns | |
| [B, N, C] sampled channels at 2d positions | |
| """ | |
| grid = self.normgrid(pos, H, W).unsqueeze(-2).to(x.dtype) | |
| x = F.grid_sample(x, grid, mode = self.mode , align_corners = False) | |
| return x.permute(0,2,3,1).squeeze(-2) |