Spaces:
Runtime error
Runtime error
| """ | |
| Copyright (c) Meta Platforms, Inc. and affiliates. | |
| All rights reserved. | |
| This source code is licensed under the license found in the | |
| LICENSE file in the root directory of this source tree. | |
| """ | |
| from tempfile import NamedTemporaryFile | |
| import argparse | |
| import torch | |
| import torchaudio | |
| import gradio as gr | |
| import os | |
| from audiocraft.models import MusicGen | |
| from audiocraft.data.audio import audio_write | |
| from share_btn import community_icon_html, loading_icon_html, share_js, css | |
| MODEL = None | |
| def load_model(version): | |
| print("Loading model", version) | |
| return MusicGen.get_pretrained(version) | |
| def predict( | |
| text, | |
| melody_input, | |
| duration=30, | |
| continuation_start=0, | |
| continuation_end=30, | |
| topk=250, | |
| topp=0, | |
| temperature=1, | |
| cfg_coef=3, | |
| ): | |
| global MODEL | |
| topk = int(topk) | |
| if MODEL is None: | |
| MODEL = load_model("melody") | |
| if melody_input is None: | |
| raise gr.Error("Please upload a melody to continue!") | |
| if duration > MODEL.lm.cfg.dataset.segment_duration: | |
| raise gr.Error("MusicGen currently supports durations of up to 30 seconds!") | |
| if continuation_end < continuation_start: | |
| raise gr.Error("The end time must be greater than the start time!") | |
| MODEL.set_generation_params( | |
| use_sampling=True, | |
| top_k=topk, | |
| top_p=topp, | |
| temperature=temperature, | |
| cfg_coef=cfg_coef, | |
| duration=duration, | |
| ) | |
| if melody_input: | |
| melody, sr = torchaudio.load(melody_input) | |
| # sr, melody = melody_input[0], torch.from_numpy(melody_input[1]).to(MODEL.device).float().t().unsqueeze(0) | |
| if melody.dim() == 2: | |
| melody = melody[None] | |
| print("\nGenerating continuation\n") | |
| melody_wavform = melody[ | |
| ..., int(sr * continuation_start) : int(sr * continuation_end) | |
| ] | |
| melody_duration = melody_wavform.shape[-1] / sr | |
| if duration + melody_duration > MODEL.lm.cfg.dataset.segment_duration: | |
| raise gr.Error("Duration + continuation duration must be <= 30 seconds") | |
| output = MODEL.generate_continuation( | |
| prompt=melody_wavform, | |
| prompt_sample_rate=sr, | |
| descriptions=[text], | |
| progress=True, | |
| ) | |
| output = output.detach().cpu().float()[0] | |
| with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: | |
| audio_write( | |
| file.name, | |
| output, | |
| MODEL.sample_rate, | |
| strategy="loudness", | |
| loudness_headroom_db=16, | |
| loudness_compressor=True, | |
| add_suffix=False, | |
| ) | |
| waveform_video = gr.make_waveform(file.name) | |
| return ( | |
| waveform_video, | |
| (sr, melody_wavform.unsqueeze(0).numpy()) if melody_input else None, | |
| ) | |
| def ui(**kwargs): | |
| def toggle(choice): | |
| if choice == "mic": | |
| return gr.update(source="microphone", value=None, label="Microphone") | |
| else: | |
| return gr.update(source="upload", value=None, label="File") | |
| def check_melody_length(melody_input): | |
| if not melody_input: | |
| return gr.update(maximum=0, value=0), gr.update(maximum=0, value=0) | |
| melody, sr = torchaudio.load(melody_input) | |
| audio_length = melody.shape[-1] / sr | |
| if melody.dim() == 2: | |
| melody = melody[None] | |
| return gr.update(maximum=audio_length, value=0), gr.update( | |
| maximum=audio_length, value=audio_length | |
| ) | |
| def preview_melody_cut(melody_input, continuation_start, continuation_end): | |
| if not melody_input: | |
| return gr.update(maximum=0, value=0), gr.update(maximum=0, value=0) | |
| melody, sr = torchaudio.load(melody_input) | |
| audio_length = melody.shape[-1] / sr | |
| if melody.dim() == 2: | |
| melody = melody[None] | |
| if continuation_end < continuation_start: | |
| raise gr.Error("The end time must be greater than the start time!") | |
| if continuation_start < 0 or continuation_end > audio_length: | |
| raise gr.Error("The continuation settings must be within the audio length!") | |
| print("cutting", int(sr * continuation_start), int(sr * continuation_end)) | |
| prompt_waveform = melody[ | |
| ..., int(sr * continuation_start) : int(sr * continuation_end) | |
| ] | |
| return (sr, prompt_waveform.unsqueeze(0).numpy()) | |
| with gr.Blocks(css=css) as interface: | |
| gr.Markdown( | |
| """ | |
| # MusicGen Continuation | |
| This a [MusicGen](https://github.com/facebookresearch/audiocraft), a simple and controllable model for music generation | |
| presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284) | |
| This Spaces only does melody continuation, you can try other features [here](https://huggingface.co/spaces/facebook/MusicGen) | |
| """ | |
| ) | |
| gr.Markdown( | |
| """ | |
| <a href="https://huggingface.co/spaces/radames/MusicGen-Continuation?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
| <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| to use it privately | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| text = gr.Text( | |
| label="Describe your music", | |
| lines=2, | |
| interactive=True, | |
| elem_id="text-input", | |
| ) | |
| with gr.Column(): | |
| radio = gr.Radio( | |
| ["file", "mic"], | |
| value="file", | |
| label="Melody Inital Condition File or Mic", | |
| info="Make sure the audio is no longer than total generation duration which is max 30 seconds, you can trim the audio in the next section", | |
| ) | |
| melody = gr.Audio( | |
| source="upload", | |
| type="filepath", | |
| label="File", | |
| interactive=True, | |
| elem_id="melody-input", | |
| ) | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| with gr.Row(): | |
| duration = gr.Slider( | |
| minimum=1, | |
| maximum=30, | |
| value=10, | |
| label="Total Generation Duration", | |
| interactive=True, | |
| ) | |
| with gr.Accordion(label="Input Melody Trimming (optional)", open=False): | |
| with gr.Row(): | |
| continuation_start = gr.Slider( | |
| minimum=0, | |
| maximum=30, | |
| step=0.01, | |
| value=0, | |
| label="melody cut start", | |
| interactive=True, | |
| ) | |
| continuation_end = gr.Slider( | |
| minimum=0, | |
| maximum=30, | |
| step=0.01, | |
| value=0, | |
| label="melody cut end", | |
| interactive=True, | |
| ) | |
| cut_btn = gr.Button("Cut Melody").style(full_width=False) | |
| with gr.Row(): | |
| preview_cut = gr.Audio( | |
| type="numpy", | |
| label="Cut Preview", | |
| ) | |
| with gr.Accordion(label="Advanced Settings", open=False): | |
| with gr.Row(): | |
| topk = gr.Number(label="Top-k", value=250, interactive=True) | |
| topp = gr.Number(label="Top-p", value=0, interactive=True) | |
| temperature = gr.Number( | |
| label="Temperature", value=1.0, interactive=True | |
| ) | |
| cfg_coef = gr.Number( | |
| label="Classifier Free Guidance", | |
| value=3.0, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| output = gr.Video(label="Generated Music", elem_id="generated-video") | |
| output_melody = gr.Audio(label="Melody ", elem_id="melody-output") | |
| with gr.Row(visible=False) as share_row: | |
| with gr.Group(elem_id="share-btn-container"): | |
| community_icon = gr.HTML(community_icon_html) | |
| loading_icon = gr.HTML(loading_icon_html) | |
| share_button = gr.Button( | |
| "Share to community", elem_id="share-btn" | |
| ) | |
| share_button.click(None, [], [], _js=share_js) | |
| melody.change( | |
| check_melody_length, | |
| melody, | |
| [continuation_start, continuation_end], | |
| queue=False, | |
| ) | |
| cut_btn.click( | |
| preview_melody_cut, | |
| [melody, continuation_start, continuation_end], | |
| preview_cut, | |
| queue=False, | |
| ) | |
| submit.click( | |
| lambda x: gr.update(visible=False), | |
| None, | |
| [share_row], | |
| queue=False, | |
| show_progress=False, | |
| ).then( | |
| predict, | |
| inputs=[ | |
| text, | |
| melody, | |
| duration, | |
| continuation_start, | |
| continuation_end, | |
| topk, | |
| topp, | |
| temperature, | |
| cfg_coef, | |
| ], | |
| outputs=[output, output_melody], | |
| ).then( | |
| lambda x: gr.update(visible=True), | |
| None, | |
| [share_row], | |
| queue=False, | |
| show_progress=False, | |
| ) | |
| radio.change(toggle, radio, [melody], queue=False, show_progress=False) | |
| examples = gr.Examples( | |
| fn=predict, | |
| examples=[ | |
| [ | |
| "An 80s driving pop song with heavy drums and synth pads in the background", | |
| "./assets/bach.mp3", | |
| 25, | |
| 0, | |
| 5, | |
| ], | |
| [ | |
| "A cheerful country song with acoustic guitars", | |
| "./assets/bolero_ravel.mp3", | |
| 25, | |
| 0, | |
| 5, | |
| ], | |
| [ | |
| "90s rock song with electric guitar and heavy drums", | |
| "./assets/bach.mp3", | |
| 25, | |
| 0, | |
| 5, | |
| ], | |
| [ | |
| "a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions", | |
| "./assets/bach.mp3", | |
| 25, | |
| 0, | |
| 5, | |
| ], | |
| [ | |
| "lofi slow bpm electro chill with organic samples", | |
| "./assets/bolero_ravel.mp3", | |
| 25, | |
| 0, | |
| 5, | |
| ], | |
| ], | |
| inputs=[text, melody, duration, continuation_start, continuation_end], | |
| outputs=[output], | |
| ) | |
| gr.Markdown( | |
| """ | |
| ### More details | |
| The model will generate a short music extract based on the description you provided. | |
| You can generate up to 30 seconds of audio. | |
| We present 4 model variations: | |
| 1. Melody -- a music generation model capable of generating music condition on text and melody inputs. **Note**, you can also use text only. | |
| 2. Small -- a 300M transformer decoder conditioned on text only. | |
| 3. Medium -- a 1.5B transformer decoder conditioned on text only. | |
| 4. Large -- a 3.3B transformer decoder conditioned on text only (might OOM for the longest sequences.) | |
| When using `melody`, ou can optionaly provide a reference audio from | |
| which a broad melody will be extracted. The model will then try to follow both the description and melody provided. | |
| You can also use your own GPU or a Google Colab by following the instructions on our repo. | |
| See [github.com/facebookresearch/audiocraft](https://github.com/facebookresearch/audiocraft) | |
| for more details. | |
| """ | |
| ) | |
| # Show the interface | |
| launch_kwargs = {} | |
| username = kwargs.get("username") | |
| password = kwargs.get("password") | |
| server_port = kwargs.get("server_port", 0) | |
| inbrowser = kwargs.get("inbrowser", False) | |
| share = kwargs.get("share", False) | |
| server_name = kwargs.get("listen") | |
| launch_kwargs["server_name"] = server_name | |
| if username and password: | |
| launch_kwargs["auth"] = (username, password) | |
| if server_port > 0: | |
| launch_kwargs["server_port"] = server_port | |
| if inbrowser: | |
| launch_kwargs["inbrowser"] = inbrowser | |
| if share: | |
| launch_kwargs["share"] = share | |
| interface.queue().launch(**launch_kwargs, max_threads=1) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--listen", | |
| type=str, | |
| default="0.0.0.0", | |
| help="IP to listen on for connections to Gradio", | |
| ) | |
| parser.add_argument( | |
| "--username", type=str, default="", help="Username for authentication" | |
| ) | |
| parser.add_argument( | |
| "--password", type=str, default="", help="Password for authentication" | |
| ) | |
| parser.add_argument( | |
| "--server_port", | |
| type=int, | |
| default=7860, | |
| help="Port to run the server listener on", | |
| ) | |
| parser.add_argument("--inbrowser", action="store_true", help="Open in browser") | |
| parser.add_argument("--share", action="store_true", help="Share the gradio UI") | |
| args = parser.parse_args() | |
| ui( | |
| username=args.username, | |
| password=args.password, | |
| inbrowser=args.inbrowser, | |
| server_port=args.server_port, | |
| share=args.share, | |
| listen=args.listen, | |
| ) | |